module Crypto.Fi ( FPrime
, eq
, add
, addr
, sub
, subr
, neg
, shift
, mul
, mulr
, redc
, square
, pow
, inv
, fromInteger
, toInteger
, testBit
, condBit
)
where
import Prelude (Eq,Show,(==),(&&),Integer,Int,show,Bool(False,True),(++),($),fail,undefined,(+),(),(*),(^),mod,Integral,otherwise,(<),div,not,String,flip,takeWhile,length,iterate,(>),(<=),(>=),maxBound,rem,quot,quotRem,error)
import qualified Prelude as P (fromInteger,toInteger)
import qualified Data.Bits as B (Bits(..),testBit,shift,(.&.),(.|.))
import Crypto.Common (log2len)
type FPrime = Integer
eq :: FPrime -> FPrime -> Bool
eq !a !b = a == b
add :: FPrime -> FPrime -> FPrime
add !a !b = a + b
addr :: FPrime -> FPrime -> FPrime -> FPrime
addr !p !a !b = redc p $ a + b
sub :: FPrime -> FPrime -> FPrime
sub a b = a b
subr :: FPrime -> FPrime -> FPrime -> FPrime
subr p a b = redc p (a b)
neg :: FPrime -> FPrime -> FPrime
neg !p !a = redc p (a)
shift :: FPrime -> Int -> FPrime
shift = B.shift
redc :: FPrime -> FPrime -> FPrime
redc !p !a = a `mod` p
mul :: FPrime -> FPrime -> FPrime
mul !a !b = a * b
mulr :: FPrime -> FPrime -> FPrime -> FPrime
mulr !p !a !b = redc p $ a * b
square :: FPrime -> FPrime -> FPrime
square p a = redc p (a ^ (2::Int))
pow :: (B.Bits a, Integral a) => FPrime -> FPrime -> a -> FPrime
pow !p !a !k = let binlog = log2len k
ex p1 p2 i
| i < 0 = p1
| not (B.testBit k i) = redc p $ ex (square p p1) (mulr p p1 p2) (i 1)
| otherwise = redc p $ ex (mulr p p1 p2) (square p p2) (i 1)
in redc p $ ex a (square p a) (binlog 2)
inv :: FPrime -> FPrime -> FPrime
inv !p !a = pow p a (toInteger p 2)
fromInteger :: Int -> FPrime -> Integer
fromInteger l !a = P.fromInteger (a `mod` (2^l))
toInteger :: FPrime -> Integer
toInteger = P.toInteger
testBit :: FPrime -> Int -> Bool
testBit = B.testBit
condBit :: FPrime -> Int -> FPrime
condBit a i = shift (a B..&. (fromInteger (i+1) ((2^(i+1)1)::Integer))) (i)