module Language.Egison.Primitives (primitiveEnv, primitiveEnvNoIO) where
import Control.Arrow
import Control.Monad.Except
import Control.Monad.Trans.Maybe
import Control.Applicative ((<$>), (<*>), (*>), (<*), pure)
import Data.IORef
import Data.Ratio
import Data.Foldable (toList)
import Text.Regex.TDFA
import System.IO
import System.Random
import System.Process
import qualified Data.Sequence as Sq
import qualified Data.Vector as V
import Data.Char (ord, chr)
import qualified Data.Text as T
import Data.Text (Text)
import qualified Data.Text.IO as T
   
import Language.Egison.Types
import Language.Egison.Parser
import Language.Egison.Core
primitiveEnv :: IO Env
primitiveEnv = do
  let ops = map (\(name, fn) -> (name, PrimitiveFunc name fn)) (primitives ++ ioPrimitives)
  bindings <- forM (constants ++ ops) $ \(name, op) -> do
    ref <- newIORef . WHNF $ Value op
    return (name, ref)
  return $ extendEnv nullEnv bindings
primitiveEnvNoIO :: IO Env
primitiveEnvNoIO = do
  let ops = map (\(name, fn) -> (name, PrimitiveFunc name fn)) primitives
  bindings <- forM (constants ++ ops) $ \(name, op) -> do
    ref <- newIORef . WHNF $ Value op
    return (name, ref)
  return $ extendEnv nullEnv bindings
noArg :: EgisonM EgisonValue -> PrimitiveFunc
noArg f = \args -> do
  args' <- tupleToList args
  case args' of 
    [] -> f >>= return . Value
    _ -> throwError $ ArgumentsNumPrimitive 0 $ length args'
oneArg :: (EgisonValue -> EgisonM EgisonValue) -> PrimitiveFunc
oneArg f = \arg -> do
  arg' <- evalWHNF arg
  case arg' of
    (TensorData (Tensor ns ds js)) -> do
      ds' <- V.mapM (\d -> f d) ds
      fromTensor (Tensor ns ds' js) >>= return . Value 
    _ -> f arg' >>= return . Value
oneArg' :: (EgisonValue -> EgisonM EgisonValue) -> PrimitiveFunc
oneArg' f = \arg -> do
  arg' <- evalWHNF arg
  case arg' of
    _ -> f arg' >>= return . Value
twoArgs :: (EgisonValue -> EgisonValue -> EgisonM EgisonValue) -> PrimitiveFunc
twoArgs f = \args -> do
  args' <- tupleToList args
  case args' of 
    [(TensorData t1@(Tensor _ _ _)), (TensorData t2@(Tensor _ _ _))] -> do
      tProduct f t1 t2 >>= fromTensor >>= return . Value
    [(TensorData(Tensor ns ds js)), val] -> do
      ds' <- V.mapM (\d -> f d val) ds
      fromTensor (Tensor ns ds' js) >>= return . Value 
    [val, (TensorData (Tensor ns ds js))] -> do
      ds' <- V.mapM (\d -> f val d) ds
      fromTensor (Tensor ns ds' js) >>= return . Value 
    [val, val'] -> f val val' >>= return . Value
    _ -> throwError $ ArgumentsNumPrimitive 2 $ length args'
twoArgs' :: (EgisonValue -> EgisonValue -> EgisonM EgisonValue) -> PrimitiveFunc
twoArgs' f = \args -> do
  args' <- tupleToList args
  case args' of 
    [val, val'] -> f val val' >>= return . Value
    _ -> throwError $ ArgumentsNumPrimitive 2 $ length args'
threeArgs' :: (EgisonValue -> EgisonValue -> EgisonValue -> EgisonM EgisonValue) -> PrimitiveFunc
threeArgs' f = \args -> do
  args' <- tupleToList args
  case args' of 
    [val, val', val''] -> f val val' val'' >>= return . Value
    _ -> throwError $ ArgumentsNumPrimitive 3 $ length args'
constants :: [(String, EgisonValue)]
constants = [
              ("f.pi", Float 3.141592653589793 0)
             ,("f.e" , Float 2.718281828459045 0)
              ]
primitives :: [(String, PrimitiveFunc)]
primitives = [ ("b.+", plus)
             , ("b.-", minus)
             , ("b.*", multiply)
             , ("b./", divide)
             , ("b.+'", plus)
             , ("b.-'", minus)
             , ("b.*'", multiply)
             , ("b./'", divide)
             , ("f.+", floatPlus)
             , ("f.-", floatMinus)
             , ("f.*", floatMult)
             , ("f./", floatDivide)
             , ("numerator", numerator')
             , ("denominator", denominator')
             , ("from-math-expr", fromScalarData)
             , ("to-math-expr", toScalarData)
             , ("to-math-expr'", toScalarData)
             , ("decons-user-scripts", deconsUserScripts)
             , ("append-user-scripts", appendUserScripts)
             , ("modulo",    integerBinaryOp mod)
             , ("quotient",   integerBinaryOp quot)
             , ("remainder", integerBinaryOp rem)
             , ("b.abs", rationalUnaryOp abs)
             , ("b.neg", rationalUnaryOp negate)
               
             , ("eq?",  eq)
             , ("lt?",  lt)
             , ("lte?", lte)
             , ("gt?",  gt)
             , ("gte?", gte)
               
             , ("round",    floatToIntegerOp round)
             , ("floor",    floatToIntegerOp floor)
             , ("ceiling",  floatToIntegerOp ceiling)
             , ("truncate", truncate')
             , ("real-part", realPart)
             , ("imaginary-part", imaginaryPart)
               
             , ("b.sqrt", floatUnaryOp sqrt)
             , ("b.sqrt'", floatUnaryOp sqrt)
             , ("b.exp", floatUnaryOp exp)
             , ("b.log", floatUnaryOp log)
             , ("b.sin", floatUnaryOp sin)
             , ("b.cos", floatUnaryOp cos)
             , ("b.tan", floatUnaryOp tan)
             , ("b.asin", floatUnaryOp asin)
             , ("b.acos", floatUnaryOp acos)
             , ("b.atan", floatUnaryOp atan)
             , ("b.sinh", floatUnaryOp sinh)
             , ("b.cosh", floatUnaryOp cosh)
             , ("b.tanh", floatUnaryOp tanh)
             , ("b.asinh", floatUnaryOp asinh)
             , ("b.acosh", floatUnaryOp acosh)
             , ("b.atanh", floatUnaryOp atanh)
             , ("tensor-size", tensorSize')
             , ("tensor-to-list", tensorToList')
             , ("df-order", dfOrder')
             , ("itof", integerToFloat)
             , ("rtof", rationalToFloat)
             , ("ctoi", charToInteger)
             , ("itoc", integerToChar)
             , ("pack", pack)
             , ("unpack", unpack)
             , ("uncons-string", unconsString)
             , ("length-string", lengthString)
             , ("append-string", appendString)
             , ("split-string", splitString)
             , ("regex", regexString)
             , ("regex-cg", regexStringCaptureGroup)
             , ("add-prime", addPrime)
             , ("add-subscript", addSubscript)
             , ("add-superscript", addSuperscript)
             , ("read-process", readProcess')
               
             , ("read", read')
             , ("read-tsv", readTSV)
             , ("show", show')
             , ("show-tsv", showTSV')
             , ("empty?", isEmpty')
             , ("uncons", uncons')
             , ("unsnoc", unsnoc')
             , ("bool?", isBool')
             , ("integer?", isInteger')
             , ("rational?", isRational')
             , ("scalar?", isScalar')
             , ("float?", isFloat')
             , ("char?", isChar')
             , ("string?", isString')
             , ("collection?", isCollection')
             , ("array?", isArray')
             , ("hash?", isHash')
             , ("tensor?", isTensor')
             , ("tensor-with-index?", isTensorWithIndex')
             , ("assert", assert)
             , ("assert-equal", assertEqual)
             ]
rationalUnaryOp :: (Rational -> Rational) -> PrimitiveFunc
rationalUnaryOp op = oneArg $ \val -> do
  r <- fromEgison val
  let r' =  op r
  return $ toEgison r'
  
rationalBinaryOp :: (Rational -> Rational -> Rational) -> PrimitiveFunc
rationalBinaryOp op = twoArgs $ \val val' -> do
  r <- fromEgison val :: EgisonM Rational
  r' <- fromEgison val' :: EgisonM Rational
  let r'' = (op r r'')
  return $ toEgison r''
rationalBinaryPred :: (Rational -> Rational -> Bool) -> PrimitiveFunc
rationalBinaryPred pred = twoArgs $ \val val' -> do
  r <- fromEgison val
  r' <- fromEgison val'
  return $ Bool $ pred r r'
integerBinaryOp :: (Integer -> Integer -> Integer) -> PrimitiveFunc
integerBinaryOp op = twoArgs $ \val val' -> do
  i <- fromEgison val
  i' <- fromEgison val'
  return $ toEgison (op i i')
integerBinaryPred :: (Integer -> Integer -> Bool) -> PrimitiveFunc
integerBinaryPred pred = twoArgs $ \val val' -> do
  i <- fromEgison val
  i' <- fromEgison val'
  return $ Bool $ pred i i'
floatUnaryOp :: (Double -> Double) -> PrimitiveFunc
floatUnaryOp op = oneArg $ \val -> do
  case val of
    (Float f 0) -> return $ Float (op f) 0
    _ -> throwError $ TypeMismatch "float" (Value val)
floatBinaryOp :: (Double -> Double -> Double) -> PrimitiveFunc
floatBinaryOp op = twoArgs $ \val val' -> do
  case (val, val') of
    ((Float f 0), (Float f' 0)) -> return $ Float (op f f') 0
    _ -> throwError $ TypeMismatch "float" (Value val)
floatBinaryPred :: (Double -> Double -> Bool) -> PrimitiveFunc
floatBinaryPred pred = twoArgs $ \val val' -> do
  f <- fromEgison val
  f' <- fromEgison val'
  return $ Bool $ pred f f'
floatPlus :: PrimitiveFunc
floatPlus = twoArgs $ \val val' -> do
  case (val, val') of
    ((Float x y), (Float x' y')) -> return $ Float (x + x')  (y + y')
    _ -> throwError $ TypeMismatch "float" (Value val)
floatMinus :: PrimitiveFunc
floatMinus = twoArgs $ \val val' -> do
  case (val, val') of
    ((Float x y), (Float x' y')) -> return $ Float (x  x')  (y  y')
    _ -> throwError $ TypeMismatch "float" (Value val)
floatMult :: PrimitiveFunc
floatMult = twoArgs $ \val val' -> do
  case (val, val') of
    ((Float x y), (Float x' y')) -> return $ Float (x * x'  y * y')  (x * y' + x' * y)
    _ -> throwError $ TypeMismatch "float" (Value val)
floatDivide :: PrimitiveFunc
floatDivide = twoArgs $ \val val' -> do
  case (val, val') of
    ((Float x y), (Float x' y')) -> return $ Float ((x * x' + y * y') / (x' * x' + y' * y')) ((y * x'  x * y') / (x' * x' + y' * y'))
    _ -> throwError $ TypeMismatch "float" (Value val)
scalarBinaryOp :: (ScalarData -> ScalarData -> ScalarData) -> PrimitiveFunc
scalarBinaryOp mOp = twoArgs $ \val val' -> do
  scalarBinaryOp' val val'
 where
  scalarBinaryOp' (ScalarData m1) (ScalarData m2) = (return . ScalarData . mathNormalize') (mOp m1 m2)
  scalarBinaryOp' val             _               = throwError $ TypeMismatch "number" (Value val)
plus :: PrimitiveFunc
plus = scalarBinaryOp mathPlus
minus :: PrimitiveFunc
minus = scalarBinaryOp (\m1 m2 -> mathPlus m1 (mathNegate m2))
multiply :: PrimitiveFunc
multiply = scalarBinaryOp mathMult
divide :: PrimitiveFunc
divide = scalarBinaryOp (\m1 (Div p1 p2) -> mathMult m1 (Div p2 p1))
numerator' :: PrimitiveFunc
numerator' =  oneArg $ numerator''
 where
  numerator'' (ScalarData m) = return $ ScalarData (mathNumerator m)
  numerator'' val = throwError $ TypeMismatch "rational" (Value val)
denominator' :: PrimitiveFunc
denominator' =  oneArg $ denominator''
 where
  denominator'' (ScalarData m) = return $ ScalarData (mathDenominator m)
  denominator'' val = throwError $ TypeMismatch "rational" (Value val)
fromScalarData :: PrimitiveFunc
fromScalarData = oneArg $ fromScalarData'
 where
  fromScalarData' (ScalarData m) = return $ mathExprToEgison m
  fromScalarData' val = throwError $ TypeMismatch "number" (Value val)
toScalarData :: PrimitiveFunc
toScalarData = oneArg $ toScalarData'
 where
  toScalarData' val = egisonToScalarData val >>= return . ScalarData . mathNormalize'
appendUserScripts :: PrimitiveFunc
appendUserScripts = twoArgs $ appendUserScripts'
 where
  appendUserScripts' v (Collection is) = do
    let is' = map Userscript (toList is)
    return $ UserIndexedData v is'
deconsUserScripts :: PrimitiveFunc
deconsUserScripts = oneArg $ deconsUserScripts'
 where
  deconsUserScripts' (UserIndexedData v is) = return $ Tuple [v, Collection (Sq.fromList (map (\(Userscript i) -> i) is))]
  deconsUserScripts' v = return $ Tuple [v, Collection (Sq.fromList [])]
eq :: PrimitiveFunc
eq = twoArgs $ \val val' ->
  return $ Bool $ val == val'
lt :: PrimitiveFunc
lt = twoArgs $ \val val' -> scalarBinaryPred' val val'
 where
  scalarBinaryPred' m@(ScalarData _) n@(ScalarData _) = do
    r <- fromEgison m :: EgisonM Rational
    r' <- fromEgison n :: EgisonM Rational
    return $ Bool $ (<) r r'
  scalarBinaryPred' (Float f 0)  (Float f' 0)  = return $ Bool $ (<) f f'
  scalarBinaryPred' (ScalarData _) val           = throwError $ TypeMismatch "number" (Value val)
  scalarBinaryPred' (Float _ _)  val           = throwError $ TypeMismatch "float" (Value val)
  scalarBinaryPred' val          _             = throwError $ TypeMismatch "number" (Value val)
  
lte :: PrimitiveFunc
lte = twoArgs $ \val val' -> scalarBinaryPred' val val'
 where
  scalarBinaryPred' m@(ScalarData _) n@(ScalarData _) = do
    r <- fromEgison m :: EgisonM Rational
    r' <- fromEgison n :: EgisonM Rational
    return $ Bool $ (<=) r r'
  scalarBinaryPred' (Float f 0)  (Float f' 0)  = return $ Bool $ (<=) f f'
  scalarBinaryPred' (ScalarData _) val           = throwError $ TypeMismatch "number" (Value val)
  scalarBinaryPred' (Float _ _)  val           = throwError $ TypeMismatch "float" (Value val)
  scalarBinaryPred' val          _             = throwError $ TypeMismatch "number" (Value val)
  
gt :: PrimitiveFunc
gt = twoArgs $ \val val' -> scalarBinaryPred' val val'
 where
  scalarBinaryPred' m@(ScalarData _) n@(ScalarData _) = do
    r <- fromEgison m :: EgisonM Rational
    r' <- fromEgison n :: EgisonM Rational
    return $ Bool $ (>) r r'
  scalarBinaryPred' (Float f 0)  (Float f' 0)  = return $ Bool $ (>) f f'
  scalarBinaryPred' (ScalarData _) val           = throwError $ TypeMismatch "number" (Value val)
  scalarBinaryPred' (Float _ _)  val           = throwError $ TypeMismatch "float" (Value val)
  scalarBinaryPred' val          _             = throwError $ TypeMismatch "number" (Value val)
  
gte :: PrimitiveFunc
gte = twoArgs $ \val val' -> scalarBinaryPred' val val'
 where
  scalarBinaryPred' m@(ScalarData _) n@(ScalarData _) = do
    r <- fromEgison m :: EgisonM Rational
    r' <- fromEgison n :: EgisonM Rational
    return $ Bool $ (>=) r r'
  scalarBinaryPred' (Float f 0)    (Float f' 0)  = return $ Bool $ (>=) f f'
  scalarBinaryPred' (ScalarData _) val           = throwError $ TypeMismatch "number" (Value val)
  scalarBinaryPred' (Float _ _)    val           = throwError $ TypeMismatch "float" (Value val)
  scalarBinaryPred' val            _             = throwError $ TypeMismatch "number" (Value val)
  
truncate' :: PrimitiveFunc
truncate' = oneArg $ \val -> numberUnaryOp' val
 where
  numberUnaryOp' (ScalarData (Div (Plus []) _)) = return $ toEgison (0 :: Integer)
  numberUnaryOp' (ScalarData (Div (Plus [(Term x [])]) (Plus [(Term y [])]))) = return $ toEgison (quot x y)
  numberUnaryOp' (Float x _)           = return $ toEgison ((truncate x) :: Integer)
  numberUnaryOp' val                   = throwError $ TypeMismatch "rational or float" (Value val)
realPart :: PrimitiveFunc
realPart =  oneArg $ realPart'
 where
  realPart' (Float x y) = return $ Float x 0
  realPart' val = throwError $ TypeMismatch "float" (Value val)
imaginaryPart :: PrimitiveFunc
imaginaryPart =  oneArg $ imaginaryPart'
 where
  imaginaryPart' (Float _ y) = return $ Float y 0
  imaginaryPart' val = throwError $ TypeMismatch "float" (Value val)
tensorSize' :: PrimitiveFunc
tensorSize' = oneArg' $ tensorSize''
 where
  tensorSize'' (TensorData (Tensor ns _ _)) = return . Collection . Sq.fromList $ map toEgison ns
  tensorSize'' _ = return . Collection $ Sq.fromList $ []
tensorToList' :: PrimitiveFunc
tensorToList' = oneArg' $ tensorToList''
 where
  tensorToList'' (TensorData (Tensor _ xs _)) = return . Collection . Sq.fromList $ V.toList xs
  tensorToList'' x = return . Collection $ Sq.fromList $ [x]
dfOrder' :: PrimitiveFunc
dfOrder' = oneArg' $ dfOrder''
 where
  dfOrder'' (TensorData (Tensor ns _ is)) = return (toEgison ((fromIntegral ((length ns)  (length is))) :: Integer))
  dfOrder'' _ = return (toEgison (0 :: Integer))
numberToFloat' :: EgisonValue -> EgisonValue
numberToFloat' (ScalarData (Div (Plus []) _)) = Float 0 0
numberToFloat' (ScalarData (Div (Plus [(Term x [])]) (Plus [(Term y [])]))) = Float (fromRational (x % y)) 0
integerToFloat :: PrimitiveFunc
integerToFloat = rationalToFloat
rationalToFloat :: PrimitiveFunc
rationalToFloat = oneArg $ \val ->
  case val of
    (ScalarData (Div (Plus []) _)) -> return $ numberToFloat' val
    (ScalarData (Div (Plus [(Term _ [])]) (Plus [(Term _ [])]))) -> return $ numberToFloat' val
    _ -> throwError $ TypeMismatch "integer or rational number" (Value val)
charToInteger :: PrimitiveFunc
charToInteger = oneArg $ \val -> do
  case val of
    Char c -> do
      let i = fromIntegral $ ord c :: Integer
      return $ toEgison i
    _ -> throwError $ TypeMismatch "character" (Value val)
integerToChar :: PrimitiveFunc
integerToChar = oneArg $ \val -> do
  case val of
    (ScalarData _) -> do
       i <- fromEgison val :: EgisonM Integer
       return $ Char $ chr $ fromIntegral i
    _ -> throwError $ TypeMismatch "integer" (Value val)
floatToIntegerOp :: (Double -> Integer) -> PrimitiveFunc
floatToIntegerOp op = oneArg $ \val -> do
  f <- fromEgison val
  return $ toEgison (op f)
pack :: PrimitiveFunc
pack = oneArg $ \val -> do
  str <- packStringValue val
  return $ String str
unpack :: PrimitiveFunc
unpack = oneArg $ \val -> do
  case val of
    String str -> return $ toEgison (T.unpack str)
    _ -> throwError $ TypeMismatch "string" (Value val)
unconsString :: PrimitiveFunc
unconsString = oneArg $ \val -> do
  case val of
    String str -> case T.uncons str of
                    Just (c, rest) ->  return $ Tuple [Char c, String rest]
                    Nothing -> throwError $ Default "Tried to unsnoc empty string"
    _ -> throwError $ TypeMismatch "string" (Value val)
lengthString :: PrimitiveFunc
lengthString = oneArg $ \val -> do
  case val of
    String str -> return . (\x -> toEgison x) . toInteger $ T.length str
    _ -> throwError $ TypeMismatch "string" (Value val)
appendString :: PrimitiveFunc
appendString = twoArgs $ \val1 val2 -> do
  case (val1, val2) of
    (String str1, String str2) -> return . String $ T.append str1 str2
    (String _, _) -> throwError $ TypeMismatch "string" (Value val2)
    (_, _) -> throwError $ TypeMismatch "string" (Value val1)
splitString :: PrimitiveFunc
splitString = twoArgs $ \pat src -> do
  case (pat, src) of
    (String patStr, String srcStr) -> return . Collection . Sq.fromList $ map String $ T.splitOn patStr srcStr
    (String _, _) -> throwError $ TypeMismatch "string" (Value src)
    (_, _) -> throwError $ TypeMismatch "string" (Value pat)
regexString :: PrimitiveFunc
regexString = twoArgs $ \pat src -> do
  case (pat, src) of
    (String patStr, String srcStr) -> do
      let (a, b, c) = (((T.unpack srcStr) =~ (T.unpack patStr)) :: (String, String, String))
      if b == ""
        then return . Collection . Sq.fromList $ []
        else return . Collection . Sq.fromList $ [Tuple [String $ T.pack a, String $ T.pack b, String $ T.pack c]]
    (String _, _) -> throwError $ TypeMismatch "string" (Value src)
    (_, _) -> throwError $ TypeMismatch "string" (Value pat)
regexStringCaptureGroup :: PrimitiveFunc
regexStringCaptureGroup = twoArgs $ \pat src -> do
  case (pat, src) of
    (String patStr, String srcStr) -> do
      let ret = (((T.unpack srcStr) =~ (T.unpack patStr)) :: [[String]])
      case ret of 
        [] -> return . Collection . Sq.fromList $ []
        ((x:xs):_) -> do let (a, c) = T.breakOn (T.pack x) srcStr
                         return . Collection . Sq.fromList $ [Tuple [String a, Collection (Sq.fromList (map (String . T.pack) xs)), String (T.drop (length x) c)]]
    (String _, _) -> throwError $ TypeMismatch "string" (Value src)
    (_, _) -> throwError $ TypeMismatch "string" (Value pat)
addPrime :: PrimitiveFunc
addPrime = oneArg $ \sym -> do
  case sym of
    ScalarData (Div (Plus [(Term 1 [(Symbol id name is, 1)])]) (Plus [(Term 1 [])])) -> return (ScalarData (Div (Plus [(Term 1 [(Symbol id (name ++ "'") is, 1)])]) (Plus [(Term 1 [])])))
    _ ->  throwError $ TypeMismatch "symbol" (Value sym)
addSubscript :: PrimitiveFunc
addSubscript = twoArgs $ \fn sub -> do
  case (fn, sub) of
    (ScalarData (Div (Plus [(Term 1 [(Symbol id name is, 1)])]) (Plus [(Term 1 [])])),
     ScalarData s@(Div (Plus [(Term 1 [(Symbol _ _ [], 1)])]) (Plus [(Term 1 [])]))) -> return (ScalarData (Div (Plus [(Term 1 [(Symbol id name (is ++ [Subscript s]), 1)])]) (Plus [(Term 1 [])])))
    (ScalarData (Div (Plus [(Term 1 [(Symbol id name is, 1)])]) (Plus [(Term 1 [])])),
     ScalarData s@(Div (Plus [(Term _ [])]) (Plus [(Term 1 [])]))) -> return (ScalarData (Div (Plus [(Term 1 [(Symbol id name (is ++ [Subscript s]), 1)])]) (Plus [(Term 1 [])])))
    (ScalarData (Div (Plus [(Term 1 [(Symbol _ _ _, 1)])]) (Plus [(Term 1 [])])),
     _) -> throwError $ TypeMismatch "symbol or integer" (Value sub)
    _ ->  throwError $ TypeMismatch "symbol or integer" (Value fn)
addSuperscript :: PrimitiveFunc
addSuperscript = twoArgs $ \fn sub -> do
  case (fn, sub) of
    (ScalarData (Div (Plus [(Term 1 [(Symbol id name is, 1)])]) (Plus [(Term 1 [])])),
     ScalarData s@(Div (Plus [(Term 1 [(Symbol _ _ [], 1)])]) (Plus [(Term 1 [])]))) -> return (ScalarData (Div (Plus [(Term 1 [(Symbol id name (is ++ [Superscript s]), 1)])]) (Plus [(Term 1 [])])))
    (ScalarData (Div (Plus [(Term 1 [(Symbol id name is, 1)])]) (Plus [(Term 1 [])])),
     ScalarData s@(Div (Plus [(Term _ [])]) (Plus [(Term 1 [])]))) -> return (ScalarData (Div (Plus [(Term 1 [(Symbol id name (is ++ [Superscript s]), 1)])]) (Plus [(Term 1 [])])))
    (ScalarData (Div (Plus [(Term 1 [(Symbol _ _ _, 1)])]) (Plus [(Term 1 [])])),
     _) -> throwError $ TypeMismatch "symbol" (Value sub)
    _ ->  throwError $ TypeMismatch "symbol" (Value fn)
readProcess' :: PrimitiveFunc
readProcess' = threeArgs' $ \cmd args input -> do
  case (cmd, args, input) of
    (String cmdStr, Collection argStrs, String inputStr) -> do
      outputStr <- liftIO $ readProcess (T.unpack cmdStr) (map (\arg -> case arg of
                                                                          String argStr -> T.unpack argStr)
                                                                (toList argStrs)) (T.unpack inputStr)
      return (String (T.pack outputStr))
    (_, _, _) -> throwError $ TypeMismatch "(string, collection, string)" (Value (Tuple [cmd, args, input]))
read' :: PrimitiveFunc
read'= oneArg' $ \val -> fromEgison val >>= readExpr . T.unpack >>= evalExprDeep nullEnv
readTSV :: PrimitiveFunc
readTSV= oneArg' $ \val -> do rets <- fromEgison val >>= readExprs . T.unpack >>= mapM (evalExprDeep nullEnv)
                              case rets of
                                [ret] -> return ret
                                _ -> return (Tuple rets)
show' :: PrimitiveFunc
show'= oneArg' $ \val -> return $ toEgison $ T.pack $ show val
showTSV' :: PrimitiveFunc
showTSV'= oneArg' $ \val -> return $ toEgison $ T.pack $ showTSV val
isEmpty' :: PrimitiveFunc
isEmpty' whnf = do
  b <- isEmptyCollection whnf
  if b
    then return $ Value $ Bool True
    else return $ Value $ Bool False
uncons' :: PrimitiveFunc
uncons' whnf = do
  mRet <- runMaybeT (unconsCollection whnf)
  case mRet of
    Just (carObjRef, cdrObjRef) -> return $ Intermediate $ ITuple [carObjRef, cdrObjRef]
    Nothing -> throwError $ Default $ "cannot uncons collection"
unsnoc' :: PrimitiveFunc
unsnoc' whnf = do
  mRet <- runMaybeT (unsnocCollection whnf)
  case mRet of
    Just (racObjRef, rdcObjRef) -> return $ Intermediate $ ITuple [racObjRef, rdcObjRef]
    Nothing -> throwError $ Default $ "cannot unsnoc collection"
assert ::  PrimitiveFunc
assert = twoArgs' $ \label test -> do
  test <- fromEgison test
  if test
    then return $ Bool True
    else throwError $ Assertion $ show label
assertEqual :: PrimitiveFunc
assertEqual = threeArgs' $ \label actual expected -> do
  if actual == expected
    then return $ Bool True
    else throwError $ Assertion $ show label ++ "\n expected: " ++ show expected ++
                                  "\n but found: " ++ show actual
ioPrimitives :: [(String, PrimitiveFunc)]
ioPrimitives = [
                 ("return", return')
               , ("open-input-file", makePort ReadMode)
               , ("open-output-file", makePort WriteMode)
               , ("close-input-port", closePort)
               , ("close-output-port", closePort)
               , ("read-char", readChar)
               , ("read-line", readLine)
               , ("write-char", writeChar)
               , ("write", writeString)
                 
               , ("read-char-from-port", readCharFromPort)
               , ("read-line-from-port", readLineFromPort)
               , ("write-char-to-port", writeCharToPort)
               , ("write-to-port", writeStringToPort)
                 
               , ("eof?", isEOFStdin)
               , ("flush", flushStdout)
               , ("eof-port?", isEOFPort)
               , ("flush-port", flushPort)
               , ("read-file", readFile')
                 
               , ("rand", randRange)
               ]
makeIO :: EgisonM EgisonValue -> EgisonValue
makeIO m = IOFunc $ liftM (Value . Tuple . (World :) . (:[])) m
makeIO' :: EgisonM () -> EgisonValue
makeIO' m = IOFunc $ m >> return (Value $ Tuple [World, Tuple []])
return' :: PrimitiveFunc
return' = oneArg' $ \val -> return $ makeIO $ return val
makePort :: IOMode -> PrimitiveFunc
makePort mode = oneArg' $ \val -> do
  filename <- fromEgison val
  port <- liftIO $ openFile (T.unpack filename) mode
  return $ makeIO $ return (Port port)
closePort :: PrimitiveFunc
closePort = oneArg' $ \val -> do
  port <- fromEgison val
  return $ makeIO' $ liftIO $ hClose port
writeChar :: PrimitiveFunc
writeChar = oneArg' $ \val -> do
  c <- fromEgison val
  return $ makeIO' $ liftIO $ putChar c
writeCharToPort :: PrimitiveFunc
writeCharToPort = twoArgs' $ \val val' -> do
  port <- fromEgison val
  c <- fromEgison val'
  return $ makeIO' $ liftIO $ hPutChar port c
writeString :: PrimitiveFunc
writeString = oneArg' $ \val -> do
  s <- fromEgison val
  return $ makeIO' $ liftIO $ T.putStr s
  
writeStringToPort :: PrimitiveFunc
writeStringToPort = twoArgs' $ \val val' -> do
  port <- fromEgison val
  s <- fromEgison val'
  return $ makeIO' $ liftIO $ T.hPutStr port s
flushStdout :: PrimitiveFunc
flushStdout = noArg $ return $ makeIO' $ liftIO $ hFlush stdout
flushPort :: PrimitiveFunc
flushPort = oneArg' $ \val -> do
  port <- fromEgison val
  return $ makeIO' $ liftIO $ hFlush port
readChar :: PrimitiveFunc
readChar = noArg $ return $ makeIO $ liftIO $ liftM Char getChar
readCharFromPort :: PrimitiveFunc
readCharFromPort = oneArg' $ \val -> do
  port <- fromEgison val
  c <- liftIO $ hGetChar port
  return $ makeIO $ return (Char c)
readLine :: PrimitiveFunc
readLine = noArg $ return $ makeIO $ liftIO $ liftM toEgison T.getLine
readLineFromPort :: PrimitiveFunc
readLineFromPort = oneArg' $ \val -> do
  port <- fromEgison val
  s <- liftIO $ T.hGetLine port
  return $ makeIO $ return $ toEgison s
readFile' :: PrimitiveFunc
readFile' =  oneArg' $ \val -> do
  filename <- fromEgison val
  s <- liftIO $ T.readFile $ T.unpack filename
  return $ makeIO $ return $ toEgison s
  
isEOFStdin :: PrimitiveFunc
isEOFStdin = noArg $ return $ makeIO $ liftIO $ liftM Bool isEOF
isEOFPort :: PrimitiveFunc
isEOFPort = oneArg' $ \val -> do
  port <- fromEgison val
  b <- liftIO $ hIsEOF port
  return $ makeIO $ return (Bool b)
randRange :: PrimitiveFunc
randRange = twoArgs' $ \val val' -> do
  i <- fromEgison val :: EgisonM Integer
  i' <- fromEgison val' :: EgisonM Integer
  n <- liftIO $ getStdRandom $ randomR (i, i')
  return $ makeIO $ return $ toEgison n