module Main where import Prelude hiding (catch) import Control.Exception ( SomeException(..), AsyncException(..), catch, handle, throw) import System.Posix.Signals import Control.Concurrent import Control.Applicative ((<$>), (<*>)) import Control.Monad.Error import Data.Version import Data.ByteString.Lazy (ByteString) import Data.ByteString.Lazy.Char8 () import qualified Data.ByteString.Lazy.Char8 as B import Text.Parsec import Text.Parsec.ByteString.Lazy import Text.Regex.Posix import System.IO import System.Environment import System.Directory (getHomeDirectory) import System.FilePath (()) import System.Console.Haskeline hiding (handle, catch, throwTo) import System.Console.GetOpt import System.Exit (ExitCode (..), exitWith, exitFailure) import Language.Egison import qualified Paths_egison_tutorial as P main :: IO () main = do args <- getArgs let (actions, nonOpts, _) = getOpt Permute options args let opts = foldl (flip id) defaultOptions actions case opts of Options {optShowHelp = True} -> printHelp Options {optShowVersion = True} -> printVersionNumber Options {optPrompt = prompt} -> do env <- primitiveEnv >>= loadLibraries case nonOpts of [] -> showBanner >> repl env prompt _ -> printHelp data Options = Options { optShowVersion :: Bool, optShowHelp :: Bool, optPrompt :: String } defaultOptions :: Options defaultOptions = Options { optShowVersion = False, optShowHelp = False, optPrompt = "> " } options :: [OptDescr (Options -> Options)] options = [ Option ['v', 'V'] ["version"] (NoArg (\opts -> opts {optShowVersion = True})) "show version number", Option ['h', '?'] ["help"] (NoArg (\opts -> opts {optShowHelp = True})) "show usage information", Option ['p'] ["prompt"] (ReqArg (\prompt opts -> opts {optPrompt = prompt}) "String") "set prompt string" ] printHelp :: IO () printHelp = do putStrLn "Usage: egison-tutorial [options]" putStrLn "" putStrLn "Options:" putStrLn " --help Display this information" putStrLn " --version Display egison version information" putStrLn " --prompt string Set prompt of the interpreter" putStrLn "" exitWith ExitSuccess printVersionNumber :: IO () printVersionNumber = do putStrLn $ showVersion P.version exitWith ExitSuccess showBanner :: IO () showBanner = do putStrLn $ "Egison Tutorial for Version " ++ showVersion P.version ++ " (C) 2013-2014 Satoshi Egi" putStrLn $ "http://www.egison.org" putStrLn $ "Welcome to Egison Tutorial!" showFinishMessage :: IO () showFinishMessage = do putStrLn $ "You have finished this section." putStrLn $ "Thank you!" showByebyeMessage :: IO () showByebyeMessage = do putStrLn $ "Leaving Egison Tutorial.\nByebye." askUser :: String -> IO Bool askUser question = do putStr $ question putStr $ " (Y/n): " hFlush stdout input <- getLine case input of [] -> return True ('y':_) -> return True ('Y':_) -> return True ('n':_) -> return False _ -> askUser question selectSection :: Tutorial -> IO [Content] selectSection tutorial = selectSectionHelper [] tutorial selectSectionHelper :: [(Int, String)] -> Tutorial -> IO [Content] selectSectionHelper hs (Sections secs) = do putStrLn "====================" putStrLn "List of tutorials." foldM (\x sec -> do putStr $ "" ++ show x ++ ": " putStrLn (fst sec) return (x + 1)) 1 secs putStrLn "====================" let m = length secs n <- readNumber m let (title, t) = head $ drop (n - 1) secs case t of Contents contents -> return contents Sections _ -> selectSectionHelper (hs ++ [(n, title)]) t readNumber :: Int -> IO Int readNumber m = do putStr $ "Please select a section to learn.\n(1-" ++ show m ++ "): " hFlush stdout input <- getLine -- let n = (read input :: Int) case input of ('1':_) -> return 1 ('2':_) -> return 2 ('3':_) -> return 3 ('4':_) -> return 4 ('5':_) -> return 5 ('6':_) -> return 6 ('7':_) -> return 7 ('8':_) -> return 8 _ -> do putStrLn "Invalid input!" readNumber m printTutorial :: Content -> IO () printTutorial (msg, examples) = do putStrLn "====================" putStrLn msg case examples of [] -> return () _ -> do putStrLn "e.g." mapM_ (\example -> do putStr " " putStrLn example) examples putStrLn "====================" onAbort :: EgisonError -> IO (Either EgisonError a) onAbort e = do let x = show e return $ Left e repl :: Env -> String -> IO () repl env prompt = do home <- getHomeDirectory contents <- selectSection tutorial liftIO (runInputT (settings home) $ loop env prompt "" contents True) where settings :: MonadIO m => FilePath -> Settings m settings home = do setComplete noCompletion $ defaultSettings { historyFile = Just (home ".egison_tutorial_history") } loop :: Env -> String -> String -> [Content] -> Bool -> InputT IO () loop env prompt' _ [] _ = do liftIO $ showFinishMessage contents <- liftIO $ selectSection tutorial loop env prompt' "" contents True loop env prompt' rest ts@(t:rs) True = do liftIO $ printTutorial t loop env prompt' rest ts False loop env prompt' rest ts@(t:rs) False = do _ <- liftIO $ installHandler keyboardSignal (Catch (do {putStr "^C"; hFlush stdout})) Nothing input <- getInputLine prompt' tid <- liftIO $ myThreadId _ <- liftIO $ installHandler keyboardSignal (Catch (throwTo tid UserInterruption)) Nothing case input of Nothing -> do response1 <- liftIO $ askUser "Do you want to proceed next?" case response1 of True -> loop env prompt' rest rs True False -> do response2 <- liftIO $ askUser "Do you want to quit egison-tutorial?" case response2 of True -> do liftIO $ showByebyeMessage return () False -> loop env prompt' rest ts False Just "quit" -> do liftIO $ showByebyeMessage return () Just "" -> case rest of "" -> do response1 <- liftIO $ askUser "Do you want to proceed next?" case response1 of True -> loop env prompt' rest rs True False -> loop env prompt' rest ts False _ -> loop env (take (length prompt) (repeat ' ')) rest ts False Just input' -> do let newInput = rest ++ input' result <- liftIO $ handle onAbort $ runEgisonTopExpr env newInput case result of Left err | show err =~ "unexpected end of input" -> do loop env (take (length prompt) (repeat ' ')) (newInput ++ "\n") ts False Left err | show err =~ "expecting (top-level|\"define\")" -> do result <- liftIO $ handle onAbort $ fromEgisonM (readExpr newInput) >>= either (return . Left) (evalEgisonExpr env) case result of Left err | show err =~ "unexpected end of input" -> do loop env (take (length prompt) (repeat ' ')) (newInput ++ "\n") ts False Left err -> do liftIO $ putStrLn $ show err loop env prompt "" ts False Right val -> do liftIO $ putStrLn $ show val loop env prompt "" ts False Left err -> do liftIO $ putStrLn $ show err loop env prompt "" ts False Right env' -> loop env' prompt "" ts False data Tutorial = Sections [(String, Tutorial)] | Contents [Content] type Content = (String, [String]) tutorial :: Tutorial tutorial = Sections [ ("Lv1 - Calculate numbers", Contents [ ("We can do arithmetic operations with `+', '-', '*'.", ["(+ 1 2)", "(* 10 20)"]), ("We can write nested expression as follow.", ["(+ (* 10 20) 2)", "(/ (* 10 20) (+ 10 20))"]), ("We are supporting rational numbers.", ["(+ 2/3 1/5)", "(/ 42 84)"]), ("We are supporting floats, too.", ["(+ 10.2 1.3)", "(* 10.2 1.3)"]), ("you can convert a rational number to a float number with 'rtof'.", ["(rtof 1/5)"]), ("We can handle collections of numbers.\n We construct then with '{}'.", ["{}", "{10}","{1 2 3 4 5}"]), ("With a 'take' function, we can extract a head part of the collection.\nWe can construct a collection with '{}'.", ["(take 0 {1 2 3 4 5})", "(take 3 {1 2 3 4 5})"]), ("We can handle infinite lists.\nFor example, 'nats' is an infinite list that contains all natural numbers.\nGet a collection of natural numbers of any length you like.", ["(take 100 nats)"]), ("With a 'map' function, we can operate each element of the collection at onece.", ["(map (* $ 2) (take 100 nats))", "(take 100 (map (* $ 2) nats))", "(take 100 (map (modulo $ 3) nats))"]), ("We can create a \"partial\" function using '$' as an argument.", ["((+ $ 10) 1)"]), ("With a 'foldl' function, we can gather together all elements of the collection using an operator you like.\nWould you try to get a sum of from 1 to 100?", ["(foldl + 0 {1 2 3 4 5})", "(foldl * 1 {1 2 3 4 5})"]), ("Try to create a sequce of numbers '{1 1/2 1/3 1/4 ... 1/100}'.", []), ("Try to calculate '1 + 1/2 + 1/3 + 1/4 + ... + 1/100'.\nPlease remember that you can convert a rational number to a float number with 'rtof'.", ["(rtof 2/3)"]), ("Try to calculate '1 + (1/2)^2 + (1/3)^2 + (1/4)^2 + ... + (1/100)^2'.", []) ]), ("Lv2 - Basics of functional programming", Contents [ ("We can compare numbers using functions that return '#t' or '#f'.\n'#t' means the true.\n#f means the false.\nFunctions that return '#t' or '#f' are called \"predicates\".", ["(eq? 1 1)", "(gt? 1 1)", "(lt? 1 1)", "(gte? 1 1)", "(lte? 1 1)"]), ("With a 'while' function, we can extract all head elements that satisfy the predicate.\n'primes' is a infinites list that contains all prime numbers.", ["(while (lt? $ 100) primes)", "(while (lt? $ 1000) primes)"]), ("With a 'filter' function, we can extract all elements that satisfy the predicate.\n'We extract all prime numbers that are congruent to 1 modulo 4.", ["(take 100 (filter (lambda [$p] (eq? (modulo p 4) 1)) primes))", "(take 200 (filter (lambda [$p] (eq? (modulo p 4) 1)) primes))"]), ("We use 'lambda' expressions to create functions.\n Here are simple 'lambda' examples.", ["((lambda [$x] (+ x 1)) 10)", "((lambda [$x] (* x x)) 10)", "((lambda [$x $y] (* x y)) 10 20)"]), ("With a 'map2' function, we can combine two lists as follow.", ["(take 100 (map2 * nats nats))", "(take 100 (map2 (lambda [$n $p] [n p]) nats primes))"]), ("We combine numbers using '[]'.\nThese things are called 'tuples'.", ["[1 2]", "[1 2 3]"]), ("Please not that a tuple that consists of only one elment is equal with that element itself.", ["[1]", "[[[1]]]"]), ("Try to create a sequce of tuples '{[1 1] [1 2] [1 3] [1 4] [1 5] [1 6] [1 7] [1 8] [1 9]}'.", []), ("Try to create a collections of sequce of tuples as follow.\n{{[1 1] [1 2] ... [1 9]}\n {[2 1] [2 2] ... [2 9]}\n ...\n {[9 1] [9 2] ... [9 9]}}", []), ("Try to create the multiplication table.\n{{[[1 1 1] [1 2 2] ... [1 9 9]}\n {[2 1 2] [2 2 4] ... [2 9 18]}\n ...\n {[9 1 9] [9 2 18] ... [9 9 81]}}", []) ]), ("Lv3 - Define your own functions", Contents [ ("We can bind a value to a variable with a 'define' expression.\nWe can easily get the value we binded to the variable.", ["(define $x 10)", "x"]), ("We can define a function. Let's define a function and test it.", ["(define $f (lambda [$x] (+ x 1)))", "(f 10)", "(define $g (lambda [$x $y] (* x y)))", "(g 10 20)"]), ("We can write a recursive definition. Let's try that.", ["(define $odds {1 @(map (+ $ 2) odds)})", "(take 10 odds)"]), ("Try to define 'evens' referring to 'odds' example above.", []), ("We can define local variables with a 'let' expression.", ["(let {[$x 10] [$y 20]} (+ x y))"]), ("Let's try 'if' expressions.", ["(if #t 1 2)", "(let {[$x 10]} (if (eq? x 10) 1 2))"]), ("Using 'define' and 'if', we can write recursive functions as follow.", ["(define $your-take (lambda [$n $xs] (if (eq? n 0) {} {(car xs) @(your-take (- n 1) (cdr xs))})))", "(your-take 10 nats)"]), ("Try to write a 'your-map' function.\nWe may need 'empty?' function inside 'your-map' function.", ["(empty? {})"]), ("We can view all library functions on collections at \"http://www.egison.org/libraries/core/collection.html\".", []) ]), ("Lv4 - Basic of pattern-matching", Contents [ ("We can do pattern-matching against multisets.", ["(match-all {1 2 3} (multiset integer) [ [x xs]])"]), ("We can do non-linear pattern-matching.\nTry the following expression with various targets.", ["(match-all {1 2 1 3} (multiset integer) [> x])"]), ("We can change the way of pattern-matching by changing \"matcher\".\nTry the following expressions.", ["(match-all {1 2 3} (list integer) [ [x xs]])", "(match-all {1 2 3} (multiset integer) [ [x xs]])", "(match-all {1 2 3} (set integer) [ [x xs]])"]), ("We can do pattern-matching against a collection of collections as follow.", ["(match-all {{1 2 3 4 5} {4 5 1} {6 1 7 4}} (list (multiset integer)) [ _>>> n])"]), ("A pattern that has '^' ahead of which is called a not-pattern.\nA not-pattern matches when the target does not match against the pattern.", ["(match-all {1 2 1 3} (multiset integer) [> x])"]), ("An and-pattern matches when the all patterns matches the target.\nIt can be used like an as-pattern.", ["(match-all {1 2 1 3} (multiset integer) [ $xs)> [x xs]])"]), ("An or-pattern matches when one of the patterns matches the target.", ["(match-all {1 2 1 3} (multiset integer) [ ^)> x])"]), ("'list' has a special pattern-constructor 'join'.\n'join' divides a collection into two collections.\nTry the following expressions.", ["(match-all {1 2 3 4 5} (list integer) [ [xs ys]])"]), ("We can enumerate two combination of numbers as follow.\nTry to enumerate three combination of numbers.", ["(match-all {1 2 3 4 5} (list integer) [>>> [x y]])"]), ("Did we think how about \"n\" comination of the elements of the collection?\nWe already have a solution.\nWe can write a pattern that include '...' as the following demonstrations.", ["(match-all {1 2 3 4 5} (list integer) [(loop $i [1 ,4] > _) a])", "(match-all {1 2 3 4 5} (list integer) [(loop $i [1 ,5] > _) a])", "(match-all {1 2 3 4 5} (list integer) [(loop $i [1 $n] > _) [n a]])"]), ("We can view a lot of demonstration of pattern-matching at \"http://www.egison.org/demonstrations/\".", []) ]), ("Lv5 - Pattern-matching against infinite collections", Contents [ ("We can write a pattern-matching against infinite lists even if that has infinite results.\nPlease note that Egison really enumurate all pairs of two natural numbers in the following example.", ["(take 10 (match-all nats (set integer) [> [m n]]))"]), ("We can enumerate all two combinations of natural numbers as follow.", ["(define $two-combs (match-all nats (list integer) [ >)> [x y]]))", "(take 100 two-combs)"]), ("We can enumerate all pythagoras numbers as follow.", ["(define $pyths (map (lambda [$x $y] (+ (* x x) (* y y))) two-combs))", "(take 100 pyths)"]), ("We have an infinite list of prime numers in 'primes'.\nPlease check it with a 'take' function.", ["(take 10 primes)"]), ("We can get twin primes or triplet primes using pattern-matching as follow.", ["(take 10 (match-all primes (list integer) [>> [n (+ n 2)]]))", "(take 10 (match-all primes (list integer) [>>> [n (+ n 2) (+ n 6)]]))", "(take 10 (match-all primes (list integer) [>>> [n (+ n 2) (+ n 6)]]))"]), ("We can enumurate all common elements between 'primes' and 'pyths' as follow.\nCan we find a pattern in these numbers.", ["(match-all [(take 100 pyths) (take 100 primes)] [(list integer) (list integer)] [[> >] c])"]), ("Play freely with the sequences of natural numbers.\nWe can view a lot of demonstration of pattern-matching at \"http://www.egison.org/demonstrations/\".", []) ]), ("Lv6 (preparing) - Pattern-matching against graphs", Contents [ ("Sorry, we are preparing this section now.", []) ]), ("Lv7 (preparing) - Modularize patterns", Contents [ ("Sorry, we are preparing this section now.", []) ]), ("Lv8 (preparing) - Define your own matchers", Contents [ ("Sorry, we are preparing this section now.", []) ]) ] -- ("The collection after '@' in a collection is called a subcollection.", ["{1 @{2 3}}", "{1 @{2 3} @{4 @{5}} 6}"]), -- ("We can destruct collections with 'car' and 'cdr'.", ["(car {1 2 3})", "(cdr {1 2 3})"]), -- ("We can define an array as follow. We can access the element of the array using '_'.", ["(define $a [| 11 22 33 |])", "a_2"]), -- ("We can define an hash as follow. We can access the element of the hash using '_' as arrays.", ["(define $h {| [1 11] [2 22] [3 33] |})", "h_2"]), -- ("We can do boolean operations with 'and', 'or', 'not'.", ["(and #t #f)", "(or #t #f)", "(not #t)"]),