module Main where import Prelude hiding (catch) import Control.Exception ( AsyncException(..), catch ) import Control.Monad.Error import Data.Version import Data.List import System.IO import System.Environment import System.Directory (getHomeDirectory) import System.FilePath (()) import System.Console.Haskeline hiding (handle, catch, throwTo) import System.Console.GetOpt import System.Exit (ExitCode (..), exitWith, exitFailure) import Language.Egison import Language.Egison.Util import qualified Paths_egison_tutorial as P main :: IO () main = do args <- getArgs let (actions, nonOpts, _) = getOpt Permute options args let opts = foldl (flip id) defaultOptions actions case opts of Options {optShowHelp = True} -> printHelp Options {optShowVersion = True} -> printVersionNumber Options {optPrompt = prompt} -> do env <- initialEnv case nonOpts of [] -> showBanner >> repl env prompt _ -> printHelp data Options = Options { optShowVersion :: Bool, optShowHelp :: Bool, optPrompt :: String } defaultOptions :: Options defaultOptions = Options { optShowVersion = False, optShowHelp = False, optPrompt = "> " } options :: [OptDescr (Options -> Options)] options = [ Option ['v', 'V'] ["version"] (NoArg (\opts -> opts {optShowVersion = True})) "show version number", Option ['h', '?'] ["help"] (NoArg (\opts -> opts {optShowHelp = True})) "show usage information", Option ['p'] ["prompt"] (ReqArg (\prompt opts -> opts {optPrompt = prompt}) "String") "set prompt string" ] printHelp :: IO () printHelp = do putStrLn "Usage: egison-tutorial [options]" putStrLn "" putStrLn "Options:" putStrLn " --help Display this information" putStrLn " --version Display egison version information" putStrLn " --prompt string Set prompt of the interpreter" putStrLn "" exitWith ExitSuccess printVersionNumber :: IO () printVersionNumber = do putStrLn $ showVersion P.version exitWith ExitSuccess showBanner :: IO () showBanner = do putStrLn $ "Egison Tutorial for Version " ++ showVersion P.version ++ " (C) 2013-2014 Satoshi Egi" putStrLn $ "http://www.egison.org" putStrLn $ "Welcome to Egison Tutorial!" putStrLn $ "** Info **" putStrLn $ "We can use a \'Tab\' key to complete keywords on the interpreter." putStrLn $ "If we type a \'Tab\' key after a closed parenthesis, the next closed parenthesis will be completed." showFinishMessage :: IO () showFinishMessage = do putStrLn $ "You have finished this section." putStrLn $ "Thank you!" showByebyeMessage :: IO () showByebyeMessage = do putStrLn $ "Leaving Egison Tutorial.\nByebye." yesOrNo :: String -> IO Bool yesOrNo question = do putStr $ question putStr $ " (Y/n): " hFlush stdout input <- getLine case input of [] -> return True ('y':_) -> return True ('Y':_) -> return True ('n':_) -> return False ('N':_) -> return False _ -> yesOrNo question nth n = head . drop (n - 1) selectSection :: Tutorial -> IO Section selectSection tutorial@(Tutorial sections) = do putStrLn $ take 30 $ repeat '=' putStrLn $ "List of sections in the tutorial" putStrLn $ show tutorial putStrLn $ take 30 $ repeat '=' putStrLn $ "Choose a section to learn." n <- getNumber (length sections) return $ nth n sections getNumber :: Int -> IO Int getNumber n = do putStr $ "(1-" ++ show n ++ "): " hFlush stdout input <- getLine case input of ('1':_) -> return 1 ('2':_) -> return 2 ('3':_) -> return 3 ('4':_) -> return 4 ('5':_) -> return 5 ('6':_) -> return 6 ('7':_) -> return 7 ('9':_) -> return 9 _ -> do putStrLn "Invalid input!" getNumber n repl :: Env -> String -> IO () repl env prompt = do section <- selectSection tutorial case section of Section _ cs -> loop env cs True where settings :: MonadIO m => FilePath -> Settings m settings home = setComplete completeEgison $ defaultSettings { historyFile = Just (home ".egison_history") } loop :: Env -> [Content] -> Bool -> IO () loop env [] _ = do liftIO $ showFinishMessage liftIO $ repl env prompt loop env (content:contents) b = (do if b then liftIO $ putStrLn $ show content else return () home <- getHomeDirectory input <- liftIO $ runInputT (settings home) $ getEgisonExprOrNewLine prompt case input of Left Nothing -> do b <- yesOrNo "Do you want to quit?" if b then return () else do b <- yesOrNo "Do you want to procced next?" if b then loop env contents True else loop env (content:contents) False Left (Just "") -> do b <- yesOrNo "Do you want to procced next?" if b then loop env contents True else loop env (content:contents) False Right (Left (topExpr, _)) -> do result <- liftIO $ runEgisonTopExpr env topExpr case result of Left err -> do liftIO $ putStrLn $ show err loop env (content:contents) False Right env' -> loop env' (content:contents) False Right (Right (expr, _)) -> do result <- liftIO $ runEgisonExpr env expr case result of Left err -> do liftIO $ putStrLn $ show err loop env (content:contents) False Right val -> do liftIO $ putStrLn $ show val loop env (content:contents) False) `catch` (\e -> case e of UserInterrupt -> putStrLn "" >> loop env (content:contents) False StackOverflow -> putStrLn "Stack over flow!" >> loop env (content:contents) False HeapOverflow -> putStrLn "Heap over flow!" >> loop env (content:contents) False _ -> putStrLn "error!" >> loop env (content:contents) False ) data Tutorial = Tutorial [Section] -- |title and contents data Section = Section String [Content] -- |explanation, examples, and exercises data Content = Content String [String] [String] instance Show Tutorial where show = showTutorial instance Show Section where show = showSection instance Show Content where show = showContent showTutorial :: Tutorial -> String showTutorial (Tutorial sections) = let n = length sections in intercalate "\n" $ map (\(n, section) -> show n ++ ": " ++ show section) $ zip [1..n] sections showSection :: Section -> String showSection (Section title _) = title showContent :: Content -> String showContent (Content msg examples exercises) = "====================\n" ++ msg ++ "\n" ++ (case examples of [] -> "" _ -> "\nExamples:\n" ++ (intercalate "\n" (map (\example -> " " ++ example) examples)) ++ "\n") ++ (case exercises of [] -> "" _ -> "\nExercises:\n" ++ (intercalate "\n" (map (\exercise -> " " ++ exercise) exercises)) ++ "\n") ++ "====================" tutorial :: Tutorial tutorial = Tutorial [Section "Calculate numbers" [ Content "We can do arithmetic operations with '+', '-', '*', and '/'." ["(+ 1 2)", "(* 10 20)"] [], Content "We can write nested expressions." ["(+ (* 10 20) 2)", "(/ (* 10 20) (+ 10 20))"] ["Try to calculate '(100 - 1) * (100 + 1)'."], Content "We are supporting rational numbers." ["(+ 2/3 1/5)", "(/ 42 84)"] [], Content "We are supporting floats, too." ["(+ 10.2 1.3)", "(* 10.2 1.3)"] [], Content "you can convert a rational number to a float number with 'rtof'." ["(rtof 1/5)", "(rtof 1/100)"] [], Content "We can handle collections of numbers.\nWe construct collections with '{}'." ["{}", "{10}", "{1 2 3 4 5}"] [], Content "With a 'take' function, we can extract a head part of the collection.\nWe can construct a collection with '{}'." ["(take 0 {1 2 3 4 5})", "(take 3 {1 2 3 4 5})"] [], Content "We can handle infinite lists.\nFor example, 'nats' is an infinite list that contains all natural numbers.\nGet a collection of natural numbers of any length you like." ["(take 100 nats)"] ["Get first 1000 numbers from nats."], Content "With a 'map' function, we can operate each element of the collection at onece." ["(take 100 (map (* $ 2) nats))", "(take 100 (map (modulo $ 3) nats))"] [], Content "We can create a \"partial\" function using '$' as an argument." ["((+ $ 10) 1)"] [], Content "With a 'foldl' function, we can gather together all elements of the collection using an operator you like." ["(foldl + 0 {1 2 3 4 5})", "(foldl * 1 {1 2 3 4 5})"] ["Try to get a sum of from 1 to 100?"], Content "Try to create a sequce of numbers '{1 1/2 1/3 1/4 ... 1/100}'." [] [], Content "Try to calculate '1 + 1/2 + 1/3 + 1/4 + ... + 1/100'.\nRemember that you can convert a rational number to a float number with 'rtof'." ["(rtof 2/3)"] [], Content "Try to calculate '1 + (1/2)^2 + (1/3)^2 + (1/4)^2 + ... + (1/100)^2'." [] [] ], Section "Basics of functional programming" [ Content "We can compare numbers using functions that return '#t' or '#f'.\n'#t' means the true.\n#f means the false.\nFunctions that return '#t' or '#f' are called \"predicates\"." ["(eq? 1 1)", "(gt? 1 1)", "(lt? 1 1)", "(gte? 1 1)", "(lte? 1 1)"] [], Content "With a 'while' function, we can extract all head elements that satisfy the predicate.\n'primes' is a infinites list that contains all prime numbers." ["(while (lt? $ 100) primes)", "(while (lt? $ 1000) primes)"] [], Content "With a 'filter' function, we can extract all elements that satisfy the predicate.\n'We extract all prime numbers that are congruent to 1 modulo 4." ["(take 100 (filter (lambda [$p] (eq? (modulo p 4) 1)) primes))", "(take 200 (filter (lambda [$p] (eq? (modulo p 4) 1)) primes))"] [], Content "We use 'lambda' expressions to create functions.\nHere are simple 'lambda' examples." ["((lambda [$x] (+ x 1)) 10)", "((lambda [$x] (* x x)) 10)", "((lambda [$x $y] (* x y)) 10 20)"] [], Content "With a 'map2' function, we can combine two lists as follow." ["(take 100 (map2 * nats nats))", "(take 100 (map2 (lambda [$n $p] [n p]) nats primes))"] [], Content "We combine numbers using '[]'.\nThese things are called 'tuples'." ["[1 2]", "[1 2 3]"] [], Content "Note that a tuple that consists of only one elment is equal with that element itself." ["[1]", "[[[1]]]"] [], Content "Try to create a sequce of tuples '{[1 1] [1 2] [1 3] [1 4] [1 5] [1 6] [1 7] [1 8] [1 9]}'." [] [], Content "Try to create a collections of sequce of tuples as follow.\n{{[1 1] [1 2] ... [1 9]}\n {[2 1] [2 2] ... [2 9]}\n ...\n {[9 1] [9 2] ... [9 9]}}" [] [], Content "Try to create the multiplication table.\n{{[[1 1 1] [1 2 2] ... [1 9 9]}\n {[2 1 2] [2 2 4] ... [2 9 18]}\n ...\n {[9 1 9] [9 2 18] ... [9 9 81]}}}" [] [] ], Section "Define your own functions" [ Content "We can bind a value to a variable with a 'define' expression.\nWe can easily get the value we bound to the variable." ["(define $x 10)", "x"] [], Content "We can define a function. Let's define a function and test it." ["(define $f (lambda [$x] (+ x 1)))", "(f 10)", "(define $g (lambda [$x $y] (* x y)))", "(g 10 20)"] [], Content "We can write a recursive definition. Let's try that." ["(define $odds {1 @(map (+ $ 2) odds)})", "(take 10 odds)"] [], Content "Try to define 'evens' referring to 'odds' example above." [] [], Content "We can define local variables with a 'let' expression." ["(let {[$x 10] [$y 20]} (+ x y))"] [], Content "Let's try 'if' expressions." ["(if #t 1 2)", "(let {[$x 10]} (if (eq? x 10) 1 2))"] [], Content "Using 'define' and 'if', we can write recursive functions as follow." ["(define $your-take (lambda [$n $xs] (if (eq? n 0) {} {(car xs) @(your-take (- n 1) (cdr xs))})))", "(your-take 10 nats)"] [], Content "Try to write a 'your-map' function.\nWe may need 'empty?' function inside 'your-map' function." ["(empty? {})"] [], Content "We can view all library functions on collections at \"http://www.egison.org/libraries/core/collection.html\"." [] [] ], Section "Basic of pattern-matching" [ Content "We can do pattern-matching against multisets." ["(match-all {1 2 3} (multiset integer) [ [x xs]])"] [], Content "We can do non-linear pattern-matching.\nTry the following expression with various targets." ["(match-all {1 2 1 3} (multiset integer) [> x])"] [], Content "We can change the way of pattern-matching by changing \"matcher\".\nTry the following expressions." ["(match-all {1 2 3} (list integer) [ [x xs]])", "(match-all {1 2 3} (multiset integer) [ [x xs]])", "(match-all {1 2 3} (set integer) [ [x xs]])"] [], Content "We can do pattern-matching against a collection of collections as follow." ["(match-all {{1 2 3 4 5} {4 5 1} {6 1 7 4}} (list (multiset integer)) [ _>>> n])"] [], Content "A pattern that has '^' ahead of which is called a not-pattern.\nA not-pattern matches when the target does not match against the pattern." ["(match-all {1 2 1 3} (multiset integer) [> x])"] [], Content "An and-pattern matches when the all patterns matches the target.\nIt can be used like an as-pattern." ["(match-all {1 2 1 3} (multiset integer) [ $xs)> [x xs]])"] [], Content "An or-pattern matches when one of the patterns matches the target." ["(match-all {1 2 1 3} (multiset integer) [ ^)> x])"] [], Content "'list' has a special pattern-constructor 'join'.\n'join' divides a collection into two collections.\nTry the following expressions." ["(match-all {1 2 3 4 5} (list integer) [ [xs ys]])"] [], Content "We can enumerate two combination of numbers as follow." ["(match-all {1 2 3 4 5} (list integer) [>>> [x y]])"] ["Try to enumerate three combination of numbers."], Content "Did we think how about \"n\" comination of the elements of the collection?\nWe already have a solution.\nWe can write a pattern that include '...' as the following demonstrations." ["(match-all {1 2 3 4 5} (list integer) [(loop $i [1 4] > _) a])", "(match-all {1 2 3 4 5} (list integer) [(loop $i [1 5] > _) a])", "(match-all {1 2 3 4 5} (list integer) [(loop $i [1 $n] > _) [n a]])"] [], Content "We can view a lot of demonstration of pattern-matching at \"http://www.egison.org/demonstrations/\"." [] [] ], Section "Pattern-matching against infinite collections" [ Content "We can write a pattern-matching against infinite lists even if that has infinite results.\nNote that Egison really enumurate all pairs of two natural numbers in the following example." ["(take 10 (match-all nats (set integer) [> [m n]]))"] [], Content "We can enumerate all two combinations of natural numbers as follow." ["(define $two-combs (match-all nats (list integer) [ >)> [x y]]))", "(take 100 two-combs)"] [], Content "We can enumerate all pythagoras numbers as follow." ["(define $pyths (map (lambda [$x $y] (+ (* x x) (* y y))) two-combs))", "(take 100 pyths)"] [], Content "We have an infinite list of prime numers in 'primes'.\nCheck it with a 'take' function." ["(take 10 primes)"] ["What is the 100th prime number?"], Content "We can get twin primes or triplet primes using pattern-matching as follow." ["(take 10 (match-all primes (list integer) [>> [n (+ n 2)]]))", "(take 10 (match-all primes (list integer) [>>> [n (+ n 2) (+ n 6)]]))", "(take 10 (match-all primes (list integer) [>>> [n (+ n 2) (+ n 6)]]))"] ["What are the 100th twin primes?"], Content "We prepared the 'p-f' function that prime-factorize a number.\nWe can play freely with numbers a lot of time." ["(take 100 (map p-f nats))"] ["Are there three successive natural numbers all of whose prime-factorization contain three primes? For example, '27=3*3*3' and '28=2*2*7' but '29=29', so the sequence '27', '28' and '29' is not that."] ], Section "Writing scripts in Egison" [ Content "Let's write a famous Hello world program in Egison.\nTry the following expression.\nIt is evaluated to the 'io-function'.\nTo execute an io-function, we use 'io' primitive as follow." ["(io (print \"Hello, world!\"))"] [], Content "We can execute multiple io-functions in sequence as follow.\nThe io-functions is executed from the head." ["(io (do {[(print \"a\")] [(print \"b\")] [(print \"c\")]} []))", "(io (do {[(write-string \"Type your name: \")] [(flush)] [$name (read-line)] [(print {@\"Hello, \" @name @\"!\"})]} []))"] [], Content "The following is a hello world program in Egison.\nTry to create a file with the following content and save it as \"hello.egi\", and execute it in the terminal as '% egison hello.egi'\n" ["(define $main (lambda [$args] (print \"Hello, world!\")))"] [] ] ]