// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_FUNCTORS_H #define EIGEN_FUNCTORS_H namespace Eigen { namespace internal { // associative functors: /** \internal * \brief Template functor to compute the sum of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, MatrixBase::sum() */ template struct scalar_sum_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a + b; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::padd(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return internal::predux(a); } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasAdd }; }; /** \internal * \brief Template functor to compute the product of two scalars * * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() */ template struct scalar_product_op { enum { // TODO vectorize mixed product Vectorizable = is_same::value && packet_traits::HasMul && packet_traits::HasMul }; typedef typename scalar_product_traits::ReturnType result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmul(a,b); } template EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const { return internal::predux_mul(a); } }; template struct functor_traits > { enum { Cost = (NumTraits::MulCost + NumTraits::MulCost)/2, // rough estimate! PacketAccess = scalar_product_op::Vectorizable }; }; /** \internal * \brief Template functor to compute the conjugate product of two scalars * * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y) */ template struct scalar_conj_product_op { enum { Conj = NumTraits::IsComplex }; typedef typename scalar_product_traits::ReturnType result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op) EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return conj_helper().pmul(a,b); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return conj_helper().pmul(a,b); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = internal::is_same::value && packet_traits::HasMul }; }; /** \internal * \brief Template functor to compute the min of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() */ template struct scalar_min_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::min; return (min)(a, b); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmin(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return internal::predux_min(a); } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasMin }; }; /** \internal * \brief Template functor to compute the max of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() */ template struct scalar_max_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { using std::max; return (max)(a, b); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmax(a,b); } template EIGEN_STRONG_INLINE const Scalar predux(const Packet& a) const { return internal::predux_max(a); } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasMax }; }; /** \internal * \brief Template functor to compute the hypot of two scalars * * \sa MatrixBase::stableNorm(), class Redux */ template struct scalar_hypot_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op) // typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& _x, const Scalar& _y) const { using std::max; using std::min; Scalar p = (max)(_x, _y); Scalar q = (min)(_x, _y); Scalar qp = q/p; return p * sqrt(Scalar(1) + qp*qp); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess=0 }; }; /** \internal * \brief Template functor to compute the pow of two scalars */ template struct scalar_binary_pow_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_binary_pow_op) inline Scalar operator() (const Scalar& a, const OtherScalar& b) const { return internal::pow(a, b); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; }; // other binary functors: /** \internal * \brief Template functor to compute the difference of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator- */ template struct scalar_difference_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a - b; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::psub(a,b); } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasSub }; }; /** \internal * \brief Template functor to compute the quotient of two scalars * * \sa class CwiseBinaryOp, Cwise::operator/() */ template struct scalar_quotient_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a, const Scalar& b) const { return a / b; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pdiv(a,b); } }; template struct functor_traits > { enum { Cost = 2 * NumTraits::MulCost, PacketAccess = packet_traits::HasDiv }; }; /** \internal * \brief Template functor to compute the and of two booleans * * \sa class CwiseBinaryOp, ArrayBase::operator&& */ struct scalar_boolean_and_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op) EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; } }; template<> struct functor_traits { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the or of two booleans * * \sa class CwiseBinaryOp, ArrayBase::operator|| */ struct scalar_boolean_or_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op) EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; } }; template<> struct functor_traits { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; // unary functors: /** \internal * \brief Template functor to compute the opposite of a scalar * * \sa class CwiseUnaryOp, MatrixBase::operator- */ template struct scalar_opposite_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pnegate(a); } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasNegate }; }; /** \internal * \brief Template functor to compute the absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs */ template struct scalar_abs_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs(a); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pabs(a); } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasAbs }; }; /** \internal * \brief Template functor to compute the squared absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs2 */ template struct scalar_abs2_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return internal::abs2(a); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pmul(a,a); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasAbs2 }; }; /** \internal * \brief Template functor to compute the conjugate of a complex value * * \sa class CwiseUnaryOp, MatrixBase::conjugate() */ template struct scalar_conjugate_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op) EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return internal::conj(a); } template EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); } }; template struct functor_traits > { enum { Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0, PacketAccess = packet_traits::HasConj }; }; /** \internal * \brief Template functor to cast a scalar to another type * * \sa class CwiseUnaryOp, MatrixBase::cast() */ template struct scalar_cast_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) typedef NewType result_type; EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast(a); } }; template struct functor_traits > { enum { Cost = is_same::value ? 0 : NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex * * \sa class CwiseUnaryOp, MatrixBase::real() */ template struct scalar_real_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::real(a); } }; template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the imaginary part of a complex * * \sa class CwiseUnaryOp, MatrixBase::imag() */ template struct scalar_imag_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return internal::imag(a); } }; template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex as a reference * * \sa class CwiseUnaryOp, MatrixBase::real() */ template struct scalar_real_ref_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::real_ref(*const_cast(&a)); } }; template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the imaginary part of a complex as a reference * * \sa class CwiseUnaryOp, MatrixBase::imag() */ template struct scalar_imag_ref_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op) typedef typename NumTraits::Real result_type; EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return internal::imag_ref(*const_cast(&a)); } }; template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * * \brief Template functor to compute the exponential of a scalar * * \sa class CwiseUnaryOp, Cwise::exp() */ template struct scalar_exp_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op) inline const Scalar operator() (const Scalar& a) const { return internal::exp(a); } typedef typename packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return internal::pexp(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasExp }; }; /** \internal * * \brief Template functor to compute the logarithm of a scalar * * \sa class CwiseUnaryOp, Cwise::log() */ template struct scalar_log_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op) inline const Scalar operator() (const Scalar& a) const { return internal::log(a); } typedef typename packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return internal::plog(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasLog }; }; /** \internal * \brief Template functor to multiply a scalar by a fixed other one * * \sa class CwiseUnaryOp, MatrixBase::operator*, MatrixBase::operator/ */ /* NOTE why doing the pset1() in packetOp *is* an optimization ? * indeed it seems better to declare m_other as a Packet and do the pset1() once * in the constructor. However, in practice: * - GCC does not like m_other as a Packet and generate a load every time it needs it * - on the other hand GCC is able to moves the pset1() outside the loop :) * - simpler code ;) * (ICC and gcc 4.4 seems to perform well in both cases, the issue is visible with y = a*x + b*y) */ template struct scalar_multiple_op { typedef typename packet_traits::type Packet; // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE scalar_multiple_op(const scalar_multiple_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE scalar_multiple_op(const Scalar& other) : m_other(other) { } EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a * m_other; } EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pmul(a, pset1(m_other)); } typename add_const_on_value_type::Nested>::type m_other; }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; template struct scalar_multiple2_op { typedef typename scalar_product_traits::ReturnType result_type; EIGEN_STRONG_INLINE scalar_multiple2_op(const scalar_multiple2_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE scalar_multiple2_op(const Scalar2& other) : m_other(other) { } EIGEN_STRONG_INLINE result_type operator() (const Scalar1& a) const { return a * m_other; } typename add_const_on_value_type::Nested>::type m_other; }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to divide a scalar by a fixed other one * * This functor is used to implement the quotient of a matrix by * a scalar where the scalar type is not necessarily a floating point type. * * \sa class CwiseUnaryOp, MatrixBase::operator/ */ template struct scalar_quotient1_op { typedef typename packet_traits::type Packet; // FIXME default copy constructors seems bugged with std::complex<> EIGEN_STRONG_INLINE scalar_quotient1_op(const scalar_quotient1_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE scalar_quotient1_op(const Scalar& other) : m_other(other) {} EIGEN_STRONG_INLINE Scalar operator() (const Scalar& a) const { return a / m_other; } EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pdiv(a, pset1(m_other)); } typename add_const_on_value_type::Nested>::type m_other; }; template struct functor_traits > { enum { Cost = 2 * NumTraits::MulCost, PacketAccess = packet_traits::HasDiv }; }; // nullary functors template struct scalar_constant_op { typedef typename packet_traits::type Packet; EIGEN_STRONG_INLINE scalar_constant_op(const scalar_constant_op& other) : m_other(other.m_other) { } EIGEN_STRONG_INLINE scalar_constant_op(const Scalar& other) : m_other(other) { } template EIGEN_STRONG_INLINE const Scalar operator() (Index, Index = 0) const { return m_other; } template EIGEN_STRONG_INLINE const Packet packetOp(Index, Index = 0) const { return internal::pset1(m_other); } const Scalar m_other; }; template struct functor_traits > // FIXME replace this packet test by a safe one { enum { Cost = 1, PacketAccess = packet_traits::Vectorizable, IsRepeatable = true }; }; template struct scalar_identity_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_identity_op) template EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { return row==col ? Scalar(1) : Scalar(0); } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false, IsRepeatable = true }; }; template struct linspaced_op_impl; // linear access for packet ops: // 1) initialization // base = [low, ..., low] + ([step, ..., step] * [-size, ..., 0]) // 2) each step // base += [size*step, ..., size*step] template struct linspaced_op_impl { typedef typename packet_traits::type Packet; linspaced_op_impl(Scalar low, Scalar step) : m_low(low), m_step(step), m_packetStep(pset1(packet_traits::size*step)), m_base(padd(pset1(low),pmul(pset1(step),plset(-packet_traits::size)))) {} template EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } template EIGEN_STRONG_INLINE const Packet packetOp(Index) const { return m_base = padd(m_base,m_packetStep); } const Scalar m_low; const Scalar m_step; const Packet m_packetStep; mutable Packet m_base; }; // random access for packet ops: // 1) each step // [low, ..., low] + ( [step, ..., step] * ( [i, ..., i] + [0, ..., size] ) ) template struct linspaced_op_impl { typedef typename packet_traits::type Packet; linspaced_op_impl(Scalar low, Scalar step) : m_low(low), m_step(step), m_lowPacket(pset1(m_low)), m_stepPacket(pset1(m_step)), m_interPacket(plset(0)) {} template EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return m_low+i*m_step; } template EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return internal::padd(m_lowPacket, pmul(m_stepPacket, padd(pset1(i),m_interPacket))); } const Scalar m_low; const Scalar m_step; const Packet m_lowPacket; const Packet m_stepPacket; const Packet m_interPacket; }; // ----- Linspace functor ---------------------------------------------------------------- // Forward declaration (we default to random access which does not really give // us a speed gain when using packet access but it allows to use the functor in // nested expressions). template struct linspaced_op; template struct functor_traits< linspaced_op > { enum { Cost = 1, PacketAccess = packet_traits::HasSetLinear, IsRepeatable = true }; }; template struct linspaced_op { typedef typename packet_traits::type Packet; linspaced_op(Scalar low, Scalar high, int num_steps) : impl((num_steps==1 ? high : low), (num_steps==1 ? Scalar() : (high-low)/(num_steps-1))) {} template EIGEN_STRONG_INLINE const Scalar operator() (Index i) const { return impl(i); } // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since // there row==0 and col is used for the actual iteration. template EIGEN_STRONG_INLINE const Scalar operator() (Index row, Index col) const { eigen_assert(col==0 || row==0); return impl(col + row); } template EIGEN_STRONG_INLINE const Packet packetOp(Index i) const { return impl.packetOp(i); } // We need this function when assigning e.g. a RowVectorXd to a MatrixXd since // there row==0 and col is used for the actual iteration. template EIGEN_STRONG_INLINE const Packet packetOp(Index row, Index col) const { eigen_assert(col==0 || row==0); return impl.packetOp(col + row); } // This proxy object handles the actual required temporaries, the different // implementations (random vs. sequential access) as well as the // correct piping to size 2/4 packet operations. const linspaced_op_impl impl; }; // all functors allow linear access, except scalar_identity_op. So we fix here a quick meta // to indicate whether a functor allows linear access, just always answering 'yes' except for // scalar_identity_op. // FIXME move this to functor_traits adding a functor_default template struct functor_has_linear_access { enum { ret = 1 }; }; template struct functor_has_linear_access > { enum { ret = 0 }; }; // in CwiseBinaryOp, we require the Lhs and Rhs to have the same scalar type, except for multiplication // where we only require them to have the same _real_ scalar type so one may multiply, say, float by complex. // FIXME move this to functor_traits adding a functor_default template struct functor_allows_mixing_real_and_complex { enum { ret = 0 }; }; template struct functor_allows_mixing_real_and_complex > { enum { ret = 1 }; }; template struct functor_allows_mixing_real_and_complex > { enum { ret = 1 }; }; /** \internal * \brief Template functor to add a scalar to a fixed other one * \sa class CwiseUnaryOp, Array::operator+ */ /* If you wonder why doing the pset1() in packetOp() is an optimization check scalar_multiple_op */ template struct scalar_add_op { typedef typename packet_traits::type Packet; // FIXME default copy constructors seems bugged with std::complex<> inline scalar_add_op(const scalar_add_op& other) : m_other(other.m_other) { } inline scalar_add_op(const Scalar& other) : m_other(other) { } inline Scalar operator() (const Scalar& a) const { return a + m_other; } inline const Packet packetOp(const Packet& a) const { return internal::padd(a, pset1(m_other)); } const Scalar m_other; }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasAdd }; }; /** \internal * \brief Template functor to compute the square root of a scalar * \sa class CwiseUnaryOp, Cwise::sqrt() */ template struct scalar_sqrt_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op) inline const Scalar operator() (const Scalar& a) const { return internal::sqrt(a); } typedef typename packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasSqrt }; }; /** \internal * \brief Template functor to compute the cosine of a scalar * \sa class CwiseUnaryOp, ArrayBase::cos() */ template struct scalar_cos_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op) inline Scalar operator() (const Scalar& a) const { return internal::cos(a); } typedef typename packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return internal::pcos(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasCos }; }; /** \internal * \brief Template functor to compute the sine of a scalar * \sa class CwiseUnaryOp, ArrayBase::sin() */ template struct scalar_sin_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op) inline const Scalar operator() (const Scalar& a) const { return internal::sin(a); } typedef typename packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return internal::psin(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasSin }; }; /** \internal * \brief Template functor to compute the tan of a scalar * \sa class CwiseUnaryOp, ArrayBase::tan() */ template struct scalar_tan_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op) inline const Scalar operator() (const Scalar& a) const { return internal::tan(a); } typedef typename packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return internal::ptan(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasTan }; }; /** \internal * \brief Template functor to compute the arc cosine of a scalar * \sa class CwiseUnaryOp, ArrayBase::acos() */ template struct scalar_acos_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op) inline const Scalar operator() (const Scalar& a) const { return internal::acos(a); } typedef typename packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return internal::pacos(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasACos }; }; /** \internal * \brief Template functor to compute the arc sine of a scalar * \sa class CwiseUnaryOp, ArrayBase::asin() */ template struct scalar_asin_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op) inline const Scalar operator() (const Scalar& a) const { return internal::asin(a); } typedef typename packet_traits::type Packet; inline Packet packetOp(const Packet& a) const { return internal::pasin(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasASin }; }; /** \internal * \brief Template functor to raise a scalar to a power * \sa class CwiseUnaryOp, Cwise::pow */ template struct scalar_pow_op { // FIXME default copy constructors seems bugged with std::complex<> inline scalar_pow_op(const scalar_pow_op& other) : m_exponent(other.m_exponent) { } inline scalar_pow_op(const Scalar& exponent) : m_exponent(exponent) {} inline Scalar operator() (const Scalar& a) const { return internal::pow(a, m_exponent); } const Scalar m_exponent; }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the quotient between a scalar and array entries. * \sa class CwiseUnaryOp, Cwise::inverse() */ template struct scalar_inverse_mult_op { scalar_inverse_mult_op(const Scalar& other) : m_other(other) {} inline Scalar operator() (const Scalar& a) const { return m_other / a; } template inline const Packet packetOp(const Packet& a) const { return internal::pdiv(pset1(m_other),a); } Scalar m_other; }; /** \internal * \brief Template functor to compute the inverse of a scalar * \sa class CwiseUnaryOp, Cwise::inverse() */ template struct scalar_inverse_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op) inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; } template inline const Packet packetOp(const Packet& a) const { return internal::pdiv(pset1(Scalar(1)),a); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasDiv }; }; /** \internal * \brief Template functor to compute the square of a scalar * \sa class CwiseUnaryOp, Cwise::square() */ template struct scalar_square_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op) inline Scalar operator() (const Scalar& a) const { return a*a; } template inline const Packet packetOp(const Packet& a) const { return internal::pmul(a,a); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; /** \internal * \brief Template functor to compute the cube of a scalar * \sa class CwiseUnaryOp, Cwise::cube() */ template struct scalar_cube_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op) inline Scalar operator() (const Scalar& a) const { return a*a*a; } template inline const Packet packetOp(const Packet& a) const { return internal::pmul(a,pmul(a,a)); } }; template struct functor_traits > { enum { Cost = 2*NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; // default functor traits for STL functors: template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = functor_traits::Cost, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = functor_traits::Cost, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 1 + functor_traits::Cost, PacketAccess = false }; }; #ifdef EIGEN_STDEXT_SUPPORT template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; template struct functor_traits > > { enum { Cost = 0, PacketAccess = false }; }; template struct functor_traits > > { enum { Cost = 0, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; template struct functor_traits > { enum { Cost = functor_traits::Cost + functor_traits::Cost + functor_traits::Cost, PacketAccess = false }; }; #endif // EIGEN_STDEXT_SUPPORT // allow to add new functors and specializations of functor_traits from outside Eigen. // this macro is really needed because functor_traits must be specialized after it is declared but before it is used... #ifdef EIGEN_FUNCTORS_PLUGIN #include EIGEN_FUNCTORS_PLUGIN #endif } // end namespace internal } // end namespace Eigen #endif // EIGEN_FUNCTORS_H