// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008, 2010 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_DOT_H #define EIGEN_DOT_H namespace Eigen { namespace internal { // helper function for dot(). The problem is that if we put that in the body of dot(), then upon calling dot // with mismatched types, the compiler emits errors about failing to instantiate cwiseProduct BEFORE // looking at the static assertions. Thus this is a trick to get better compile errors. template struct dot_nocheck { typedef typename scalar_product_traits::Scalar,typename traits::Scalar>::ReturnType ResScalar; static inline ResScalar run(const MatrixBase& a, const MatrixBase& b) { return a.template binaryExpr::Scalar,typename traits::Scalar> >(b).sum(); } }; template struct dot_nocheck { typedef typename scalar_product_traits::Scalar,typename traits::Scalar>::ReturnType ResScalar; static inline ResScalar run(const MatrixBase& a, const MatrixBase& b) { return a.transpose().template binaryExpr::Scalar,typename traits::Scalar> >(b).sum(); } }; } // end namespace internal /** \returns the dot product of *this with other. * * \only_for_vectors * * \note If the scalar type is complex numbers, then this function returns the hermitian * (sesquilinear) dot product, conjugate-linear in the first variable and linear in the * second variable. * * \sa squaredNorm(), norm() */ template template typename internal::scalar_product_traits::Scalar,typename internal::traits::Scalar>::ReturnType MatrixBase::dot(const MatrixBase& other) const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) typedef internal::scalar_conj_product_op func; EIGEN_CHECK_BINARY_COMPATIBILIY(func,Scalar,typename OtherDerived::Scalar); eigen_assert(size() == other.size()); return internal::dot_nocheck::run(*this, other); } #ifdef EIGEN2_SUPPORT /** \returns the dot product of *this with other, with the Eigen2 convention that the dot product is linear in the first variable * (conjugating the second variable). Of course this only makes a difference in the complex case. * * This method is only available in EIGEN2_SUPPORT mode. * * \only_for_vectors * * \sa dot() */ template template typename internal::traits::Scalar MatrixBase::eigen2_dot(const MatrixBase& other) const { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived) EIGEN_STATIC_ASSERT_VECTOR_ONLY(OtherDerived) EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(Derived,OtherDerived) EIGEN_STATIC_ASSERT((internal::is_same::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) eigen_assert(size() == other.size()); return internal::dot_nocheck::run(other,*this); } #endif //---------- implementation of L2 norm and related functions ---------- /** \returns, for vectors, the squared \em l2 norm of \c *this, and for matrices the Frobenius norm. * In both cases, it consists in the sum of the square of all the matrix entries. * For vectors, this is also equals to the dot product of \c *this with itself. * * \sa dot(), norm() */ template EIGEN_STRONG_INLINE typename NumTraits::Scalar>::Real MatrixBase::squaredNorm() const { return numext::real((*this).cwiseAbs2().sum()); } /** \returns, for vectors, the \em l2 norm of \c *this, and for matrices the Frobenius norm. * In both cases, it consists in the square root of the sum of the square of all the matrix entries. * For vectors, this is also equals to the square root of the dot product of \c *this with itself. * * \sa dot(), squaredNorm() */ template inline typename NumTraits::Scalar>::Real MatrixBase::norm() const { using std::sqrt; return sqrt(squaredNorm()); } /** \returns an expression of the quotient of *this by its own norm. * * \only_for_vectors * * \sa norm(), normalize() */ template inline const typename MatrixBase::PlainObject MatrixBase::normalized() const { typedef typename internal::nested::type Nested; typedef typename internal::remove_reference::type _Nested; _Nested n(derived()); return n / n.norm(); } /** Normalizes the vector, i.e. divides it by its own norm. * * \only_for_vectors * * \sa norm(), normalized() */ template inline void MatrixBase::normalize() { *this /= norm(); } //---------- implementation of other norms ---------- namespace internal { template struct lpNorm_selector { typedef typename NumTraits::Scalar>::Real RealScalar; static inline RealScalar run(const MatrixBase& m) { using std::pow; return pow(m.cwiseAbs().array().pow(p).sum(), RealScalar(1)/p); } }; template struct lpNorm_selector { static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) { return m.cwiseAbs().sum(); } }; template struct lpNorm_selector { static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) { return m.norm(); } }; template struct lpNorm_selector { static inline typename NumTraits::Scalar>::Real run(const MatrixBase& m) { return m.cwiseAbs().maxCoeff(); } }; } // end namespace internal /** \returns the \f$ \ell^p \f$ norm of *this, that is, returns the p-th root of the sum of the p-th powers of the absolute values * of the coefficients of *this. If \a p is the special value \a Eigen::Infinity, this function returns the \f$ \ell^\infty \f$ * norm, that is the maximum of the absolute values of the coefficients of *this. * * \sa norm() */ template template inline typename NumTraits::Scalar>::Real MatrixBase::lpNorm() const { return internal::lpNorm_selector::run(*this); } //---------- implementation of isOrthogonal / isUnitary ---------- /** \returns true if *this is approximately orthogonal to \a other, * within the precision given by \a prec. * * Example: \include MatrixBase_isOrthogonal.cpp * Output: \verbinclude MatrixBase_isOrthogonal.out */ template template bool MatrixBase::isOrthogonal (const MatrixBase& other, const RealScalar& prec) const { typename internal::nested::type nested(derived()); typename internal::nested::type otherNested(other.derived()); return numext::abs2(nested.dot(otherNested)) <= prec * prec * nested.squaredNorm() * otherNested.squaredNorm(); } /** \returns true if *this is approximately an unitary matrix, * within the precision given by \a prec. In the case where the \a Scalar * type is real numbers, a unitary matrix is an orthogonal matrix, whence the name. * * \note This can be used to check whether a family of vectors forms an orthonormal basis. * Indeed, \c m.isUnitary() returns true if and only if the columns (equivalently, the rows) of m form an * orthonormal basis. * * Example: \include MatrixBase_isUnitary.cpp * Output: \verbinclude MatrixBase_isUnitary.out */ template bool MatrixBase::isUnitary(const RealScalar& prec) const { typename Derived::Nested nested(derived()); for(Index i = 0; i < cols(); ++i) { if(!internal::isApprox(nested.col(i).squaredNorm(), static_cast(1), prec)) return false; for(Index j = 0; j < i; ++j) if(!internal::isMuchSmallerThan(nested.col(i).dot(nested.col(j)), static_cast(1), prec)) return false; } return true; } } // end namespace Eigen #endif // EIGEN_DOT_H