// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2016 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_UNARY_FUNCTORS_H #define EIGEN_UNARY_FUNCTORS_H namespace Eigen { namespace internal { /** \internal * \brief Template functor to compute the opposite of a scalar * * \sa class CwiseUnaryOp, MatrixBase::operator- */ template struct scalar_opposite_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_opposite_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return -a; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pnegate(a); } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasNegate }; }; /** \internal * \brief Template functor to compute the absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs */ template struct scalar_abs_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_abs_op) typedef typename NumTraits::Real result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs(a); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pabs(a); } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = packet_traits::HasAbs }; }; /** \internal * \brief Template functor to compute the score of a scalar, to chose a pivot * * \sa class CwiseUnaryOp */ template struct scalar_score_coeff_op : scalar_abs_op { typedef void Score_is_abs; }; template struct functor_traits > : functor_traits > {}; /* Avoid recomputing abs when we know the score and they are the same. Not a true Eigen functor. */ template struct abs_knowing_score { EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score) typedef typename NumTraits::Real result_type; template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a, const Score&) const { return numext::abs(a); } }; template struct abs_knowing_score::Score_is_abs> { EIGEN_EMPTY_STRUCT_CTOR(abs_knowing_score) typedef typename NumTraits::Real result_type; template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scal&, const result_type& a) const { return a; } }; /** \internal * \brief Template functor to compute the squared absolute value of a scalar * * \sa class CwiseUnaryOp, Cwise::abs2 */ template struct scalar_abs2_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_abs2_op) typedef typename NumTraits::Real result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { return numext::abs2(a); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pmul(a,a); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasAbs2 }; }; /** \internal * \brief Template functor to compute the conjugate of a complex value * * \sa class CwiseUnaryOp, MatrixBase::conjugate() */ template struct scalar_conjugate_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_conjugate_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { using numext::conj; return conj(a); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::pconj(a); } }; template struct functor_traits > { enum { Cost = NumTraits::IsComplex ? NumTraits::AddCost : 0, PacketAccess = packet_traits::HasConj }; }; /** \internal * \brief Template functor to compute the phase angle of a complex * * \sa class CwiseUnaryOp, Cwise::arg */ template struct scalar_arg_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_arg_op) typedef typename NumTraits::Real result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const Scalar& a) const { using numext::arg; return arg(a); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return internal::parg(a); } }; template struct functor_traits > { enum { Cost = NumTraits::IsComplex ? 5 * NumTraits::MulCost : NumTraits::AddCost, PacketAccess = packet_traits::HasArg }; }; /** \internal * \brief Template functor to cast a scalar to another type * * \sa class CwiseUnaryOp, MatrixBase::cast() */ template struct scalar_cast_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_cast_op) typedef NewType result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const NewType operator() (const Scalar& a) const { return cast(a); } }; template struct functor_traits > { enum { Cost = is_same::value ? 0 : NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex * * \sa class CwiseUnaryOp, MatrixBase::real() */ template struct scalar_real_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_real_op) typedef typename NumTraits::Real result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::real(a); } }; template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the imaginary part of a complex * * \sa class CwiseUnaryOp, MatrixBase::imag() */ template struct scalar_imag_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_op) typedef typename NumTraits::Real result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { return numext::imag(a); } }; template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the real part of a complex as a reference * * \sa class CwiseUnaryOp, MatrixBase::real() */ template struct scalar_real_ref_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_real_ref_op) typedef typename NumTraits::Real result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::real_ref(*const_cast(&a)); } }; template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * \brief Template functor to extract the imaginary part of a complex as a reference * * \sa class CwiseUnaryOp, MatrixBase::imag() */ template struct scalar_imag_ref_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_imag_ref_op) typedef typename NumTraits::Real result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type& operator() (const Scalar& a) const { return numext::imag_ref(*const_cast(&a)); } }; template struct functor_traits > { enum { Cost = 0, PacketAccess = false }; }; /** \internal * * \brief Template functor to compute the exponential of a scalar * * \sa class CwiseUnaryOp, Cwise::exp() */ template struct scalar_exp_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_exp_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::exp(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexp(a); } }; template struct functor_traits > { enum { PacketAccess = packet_traits::HasExp, // The following numbers are based on the AVX implementation. #ifdef EIGEN_VECTORIZE_FMA // Haswell can issue 2 add/mul/madd per cycle. Cost = (sizeof(Scalar) == 4 // float: 8 pmadd, 4 pmul, 2 padd/psub, 6 other ? (8 * NumTraits::AddCost + 6 * NumTraits::MulCost) // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other : (14 * NumTraits::AddCost + 6 * NumTraits::MulCost + scalar_div_cost::HasDiv>::value)) #else Cost = (sizeof(Scalar) == 4 // float: 7 pmadd, 6 pmul, 4 padd/psub, 10 other ? (21 * NumTraits::AddCost + 13 * NumTraits::MulCost) // double: 7 pmadd, 5 pmul, 3 padd/psub, 1 div, 13 other : (23 * NumTraits::AddCost + 12 * NumTraits::MulCost + scalar_div_cost::HasDiv>::value)) #endif }; }; /** \internal * * \brief Template functor to compute the exponential of a scalar - 1. * * \sa class CwiseUnaryOp, ArrayBase::expm1() */ template struct scalar_expm1_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_expm1_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::expm1(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pexpm1(a); } }; template struct functor_traits > { enum { PacketAccess = packet_traits::HasExpm1, Cost = functor_traits >::Cost // TODO measure cost of expm1 }; }; /** \internal * * \brief Template functor to compute the logarithm of a scalar * * \sa class CwiseUnaryOp, ArrayBase::log() */ template struct scalar_log_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_log_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog(a); } }; template struct functor_traits > { enum { PacketAccess = packet_traits::HasLog, Cost = (PacketAccess // The following numbers are based on the AVX implementation. #ifdef EIGEN_VECTORIZE_FMA // 8 pmadd, 6 pmul, 8 padd/psub, 16 other, can issue 2 add/mul/madd per cycle. ? (20 * NumTraits::AddCost + 7 * NumTraits::MulCost) #else // 8 pmadd, 6 pmul, 8 padd/psub, 20 other ? (36 * NumTraits::AddCost + 14 * NumTraits::MulCost) #endif // Measured cost of std::log. : sizeof(Scalar)==4 ? 40 : 85) }; }; /** \internal * * \brief Template functor to compute the logarithm of 1 plus a scalar value * * \sa class CwiseUnaryOp, ArrayBase::log1p() */ template struct scalar_log1p_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_log1p_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::log1p(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog1p(a); } }; template struct functor_traits > { enum { PacketAccess = packet_traits::HasLog1p, Cost = functor_traits >::Cost // TODO measure cost of log1p }; }; /** \internal * * \brief Template functor to compute the base-10 logarithm of a scalar * * \sa class CwiseUnaryOp, Cwise::log10() */ template struct scalar_log10_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_log10_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { EIGEN_USING_STD_MATH(log10) return log10(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::plog10(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasLog10 }; }; /** \internal * \brief Template functor to compute the square root of a scalar * \sa class CwiseUnaryOp, Cwise::sqrt() */ template struct scalar_sqrt_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sqrt_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sqrt(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psqrt(a); } }; template struct functor_traits > { enum { #if EIGEN_FAST_MATH // The following numbers are based on the AVX implementation. Cost = (sizeof(Scalar) == 8 ? 28 // 4 pmul, 1 pmadd, 3 other : (3 * NumTraits::AddCost + 5 * NumTraits::MulCost)), #else // The following numbers are based on min VSQRT throughput on Haswell. Cost = (sizeof(Scalar) == 8 ? 28 : 14), #endif PacketAccess = packet_traits::HasSqrt }; }; /** \internal * \brief Template functor to compute the reciprocal square root of a scalar * \sa class CwiseUnaryOp, Cwise::rsqrt() */ template struct scalar_rsqrt_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_rsqrt_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar(1)/numext::sqrt(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::prsqrt(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasRsqrt }; }; /** \internal * \brief Template functor to compute the cosine of a scalar * \sa class CwiseUnaryOp, ArrayBase::cos() */ template struct scalar_cos_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_cos_op) EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return numext::cos(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcos(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasCos }; }; /** \internal * \brief Template functor to compute the sine of a scalar * \sa class CwiseUnaryOp, ArrayBase::sin() */ template struct scalar_sin_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sin_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sin(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psin(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasSin }; }; /** \internal * \brief Template functor to compute the tan of a scalar * \sa class CwiseUnaryOp, ArrayBase::tan() */ template struct scalar_tan_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_tan_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::tan(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::ptan(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasTan }; }; /** \internal * \brief Template functor to compute the arc cosine of a scalar * \sa class CwiseUnaryOp, ArrayBase::acos() */ template struct scalar_acos_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_acos_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::acos(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pacos(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasACos }; }; /** \internal * \brief Template functor to compute the arc sine of a scalar * \sa class CwiseUnaryOp, ArrayBase::asin() */ template struct scalar_asin_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_asin_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::asin(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pasin(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasASin }; }; /** \internal * \brief Template functor to compute the atan of a scalar * \sa class CwiseUnaryOp, ArrayBase::atan() */ template struct scalar_atan_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_atan_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::atan(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::patan(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasATan }; }; /** \internal * \brief Template functor to compute the tanh of a scalar * \sa class CwiseUnaryOp, ArrayBase::tanh() */ template struct scalar_tanh_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_tanh_op) EIGEN_DEVICE_FUNC inline const Scalar operator()(const Scalar& a) const { return numext::tanh(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& x) const { return ptanh(x); } }; template struct functor_traits > { enum { PacketAccess = packet_traits::HasTanh, Cost = ( (EIGEN_FAST_MATH && is_same::value) // The following numbers are based on the AVX implementation, #ifdef EIGEN_VECTORIZE_FMA // Haswell can issue 2 add/mul/madd per cycle. // 9 pmadd, 2 pmul, 1 div, 2 other ? (2 * NumTraits::AddCost + 6 * NumTraits::MulCost + scalar_div_cost::HasDiv>::value) #else ? (11 * NumTraits::AddCost + 11 * NumTraits::MulCost + scalar_div_cost::HasDiv>::value) #endif // This number assumes a naive implementation of tanh : (6 * NumTraits::AddCost + 3 * NumTraits::MulCost + 2 * scalar_div_cost::HasDiv>::value + functor_traits >::Cost)) }; }; /** \internal * \brief Template functor to compute the sinh of a scalar * \sa class CwiseUnaryOp, ArrayBase::sinh() */ template struct scalar_sinh_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sinh_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::sinh(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psinh(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasSinh }; }; /** \internal * \brief Template functor to compute the cosh of a scalar * \sa class CwiseUnaryOp, ArrayBase::cosh() */ template struct scalar_cosh_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_cosh_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return numext::cosh(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pcosh(a); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = packet_traits::HasCosh }; }; /** \internal * \brief Template functor to compute the inverse of a scalar * \sa class CwiseUnaryOp, Cwise::inverse() */ template struct scalar_inverse_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_inverse_op) EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return Scalar(1)/a; } template EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const { return internal::pdiv(pset1(Scalar(1)),a); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasDiv }; }; /** \internal * \brief Template functor to compute the square of a scalar * \sa class CwiseUnaryOp, Cwise::square() */ template struct scalar_square_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_square_op) EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a; } template EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const { return internal::pmul(a,a); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; /** \internal * \brief Template functor to compute the cube of a scalar * \sa class CwiseUnaryOp, Cwise::cube() */ template struct scalar_cube_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_cube_op) EIGEN_DEVICE_FUNC inline Scalar operator() (const Scalar& a) const { return a*a*a; } template EIGEN_DEVICE_FUNC inline const Packet packetOp(const Packet& a) const { return internal::pmul(a,pmul(a,a)); } }; template struct functor_traits > { enum { Cost = 2*NumTraits::MulCost, PacketAccess = packet_traits::HasMul }; }; /** \internal * \brief Template functor to compute the rounded value of a scalar * \sa class CwiseUnaryOp, ArrayBase::round() */ template struct scalar_round_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_round_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::round(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pround(a); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasRound }; }; /** \internal * \brief Template functor to compute the floor of a scalar * \sa class CwiseUnaryOp, ArrayBase::floor() */ template struct scalar_floor_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_floor_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::floor(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pfloor(a); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasFloor }; }; /** \internal * \brief Template functor to compute the ceil of a scalar * \sa class CwiseUnaryOp, ArrayBase::ceil() */ template struct scalar_ceil_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_ceil_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar& a) const { return numext::ceil(a); } template EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::pceil(a); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = packet_traits::HasCeil }; }; /** \internal * \brief Template functor to compute whether a scalar is NaN * \sa class CwiseUnaryOp, ArrayBase::isnan() */ template struct scalar_isnan_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_isnan_op) typedef bool result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { #if defined(__SYCL_DEVICE_ONLY__) return numext::isnan(a); #else return (numext::isnan)(a); #endif } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to check whether a scalar is +/-inf * \sa class CwiseUnaryOp, ArrayBase::isinf() */ template struct scalar_isinf_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_isinf_op) typedef bool result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { #if defined(__SYCL_DEVICE_ONLY__) return numext::isinf(a); #else return (numext::isinf)(a); #endif } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to check whether a scalar has a finite value * \sa class CwiseUnaryOp, ArrayBase::isfinite() */ template struct scalar_isfinite_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_isfinite_op) typedef bool result_type; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE result_type operator() (const Scalar& a) const { #if defined(__SYCL_DEVICE_ONLY__) return numext::isfinite(a); #else return (numext::isfinite)(a); #endif } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the logical not of a boolean * * \sa class CwiseUnaryOp, ArrayBase::operator! */ template struct scalar_boolean_not_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_not_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a) const { return !a; } }; template struct functor_traits > { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the signum of a scalar * \sa class CwiseUnaryOp, Cwise::sign() */ template::IsComplex!=0) > struct scalar_sign_op; template struct scalar_sign_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { return Scalar( (a>Scalar(0)) - (a //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); } }; template struct scalar_sign_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_sign_op) EIGEN_DEVICE_FUNC inline const Scalar operator() (const Scalar& a) const { typedef typename NumTraits::Real real_type; real_type aa = numext::abs(a); if (aa==real_type(0)) return Scalar(0); aa = real_type(1)/aa; return Scalar(real(a)*aa, imag(a)*aa ); } //TODO //template //EIGEN_DEVICE_FUNC inline Packet packetOp(const Packet& a) const { return internal::psign(a); } }; template struct functor_traits > { enum { Cost = NumTraits::IsComplex ? ( 8*NumTraits::MulCost ) // roughly : ( 3*NumTraits::AddCost), PacketAccess = packet_traits::HasSign }; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_FUNCTORS_H