// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2015 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEVECTOR_H #define EIGEN_SPARSEVECTOR_H namespace Eigen { /** \ingroup SparseCore_Module * \class SparseVector * * \brief a sparse vector class * * \tparam _Scalar the scalar type, i.e. the type of the coefficients * * See http://www.netlib.org/linalg/html_templates/node91.html for details on the storage scheme. * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEVECTOR_PLUGIN. */ namespace internal { template struct traits > { typedef _Scalar Scalar; typedef _StorageIndex StorageIndex; typedef Sparse StorageKind; typedef MatrixXpr XprKind; enum { IsColVector = (_Options & RowMajorBit) ? 0 : 1, RowsAtCompileTime = IsColVector ? Dynamic : 1, ColsAtCompileTime = IsColVector ? 1 : Dynamic, MaxRowsAtCompileTime = RowsAtCompileTime, MaxColsAtCompileTime = ColsAtCompileTime, Flags = _Options | NestByRefBit | LvalueBit | (IsColVector ? 0 : RowMajorBit) | CompressedAccessBit, SupportedAccessPatterns = InnerRandomAccessPattern }; }; // Sparse-Vector-Assignment kinds: enum { SVA_RuntimeSwitch, SVA_Inner, SVA_Outer }; template< typename Dest, typename Src, int AssignmentKind = !bool(Src::IsVectorAtCompileTime) ? SVA_RuntimeSwitch : Src::InnerSizeAtCompileTime==1 ? SVA_Outer : SVA_Inner> struct sparse_vector_assign_selector; } template class SparseVector : public SparseCompressedBase > { typedef SparseCompressedBase Base; using Base::convert_index; public: EIGEN_SPARSE_PUBLIC_INTERFACE(SparseVector) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, +=) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseVector, -=) typedef internal::CompressedStorage Storage; enum { IsColVector = internal::traits::IsColVector }; enum { Options = _Options }; EIGEN_STRONG_INLINE Index rows() const { return IsColVector ? m_size : 1; } EIGEN_STRONG_INLINE Index cols() const { return IsColVector ? 1 : m_size; } EIGEN_STRONG_INLINE Index innerSize() const { return m_size; } EIGEN_STRONG_INLINE Index outerSize() const { return 1; } EIGEN_STRONG_INLINE const Scalar* valuePtr() const { return m_data.valuePtr(); } EIGEN_STRONG_INLINE Scalar* valuePtr() { return m_data.valuePtr(); } EIGEN_STRONG_INLINE const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } EIGEN_STRONG_INLINE StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } inline const StorageIndex* outerIndexPtr() const { return 0; } inline StorageIndex* outerIndexPtr() { return 0; } inline const StorageIndex* innerNonZeroPtr() const { return 0; } inline StorageIndex* innerNonZeroPtr() { return 0; } /** \internal */ inline Storage& data() { return m_data; } /** \internal */ inline const Storage& data() const { return m_data; } inline Scalar coeff(Index row, Index col) const { eigen_assert(IsColVector ? (col==0 && row>=0 && row=0 && col=0 && i=0 && row=0 && col=0 && i=0 && row=0 && col=0 && i= startId) && (m_data.index(p) > i) ) { m_data.index(p+1) = m_data.index(p); m_data.value(p+1) = m_data.value(p); --p; } m_data.index(p+1) = convert_index(i); m_data.value(p+1) = 0; return m_data.value(p+1); } /** */ inline void reserve(Index reserveSize) { m_data.reserve(reserveSize); } inline void finalize() {} /** \copydoc SparseMatrix::prune(const Scalar&,const RealScalar&) */ void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits::dummy_precision()) { m_data.prune(reference,epsilon); } /** Resizes the sparse vector to \a rows x \a cols * * This method is provided for compatibility with matrices. * For a column vector, \a cols must be equal to 1. * For a row vector, \a rows must be equal to 1. * * \sa resize(Index) */ void resize(Index rows, Index cols) { eigen_assert((IsColVector ? cols : rows)==1 && "Outer dimension must equal 1"); resize(IsColVector ? rows : cols); } /** Resizes the sparse vector to \a newSize * This method deletes all entries, thus leaving an empty sparse vector * * \sa conservativeResize(), setZero() */ void resize(Index newSize) { m_size = newSize; m_data.clear(); } /** Resizes the sparse vector to \a newSize, while leaving old values untouched. * * If the size of the vector is decreased, then the storage of the out-of bounds coefficients is kept and reserved. * Call .data().squeeze() to free extra memory. * * \sa reserve(), setZero() */ void conservativeResize(Index newSize) { if (newSize < m_size) { Index i = 0; while (i inline SparseVector(const SparseMatrixBase& other) : m_size(0) { #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN #endif check_template_parameters(); *this = other.derived(); } inline SparseVector(const SparseVector& other) : Base(other), m_size(0) { check_template_parameters(); *this = other.derived(); } /** Swaps the values of \c *this and \a other. * Overloaded for performance: this version performs a \em shallow swap by swapping pointers and attributes only. * \sa SparseMatrixBase::swap() */ inline void swap(SparseVector& other) { std::swap(m_size, other.m_size); m_data.swap(other.m_data); } template inline void swap(SparseMatrix& other) { eigen_assert(other.outerSize()==1); std::swap(m_size, other.m_innerSize); m_data.swap(other.m_data); } inline SparseVector& operator=(const SparseVector& other) { if (other.isRValue()) { swap(other.const_cast_derived()); } else { resize(other.size()); m_data = other.m_data; } return *this; } template inline SparseVector& operator=(const SparseMatrixBase& other) { SparseVector tmp(other.size()); internal::sparse_vector_assign_selector::run(tmp,other.derived()); this->swap(tmp); return *this; } #ifndef EIGEN_PARSED_BY_DOXYGEN template inline SparseVector& operator=(const SparseSparseProduct& product) { return Base::operator=(product); } #endif friend std::ostream & operator << (std::ostream & s, const SparseVector& m) { for (Index i=0; i::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); EIGEN_STATIC_ASSERT((_Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); } Storage m_data; Index m_size; }; namespace internal { template struct evaluator > : evaluator_base > { typedef SparseVector<_Scalar,_Options,_Index> SparseVectorType; typedef evaluator_base Base; typedef typename SparseVectorType::InnerIterator InnerIterator; typedef typename SparseVectorType::ReverseInnerIterator ReverseInnerIterator; enum { CoeffReadCost = NumTraits<_Scalar>::ReadCost, Flags = SparseVectorType::Flags }; evaluator() : Base() {} explicit evaluator(const SparseVectorType &mat) : m_matrix(&mat) { EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); } inline Index nonZerosEstimate() const { return m_matrix->nonZeros(); } operator SparseVectorType&() { return m_matrix->const_cast_derived(); } operator const SparseVectorType&() const { return *m_matrix; } const SparseVectorType *m_matrix; }; template< typename Dest, typename Src> struct sparse_vector_assign_selector { static void run(Dest& dst, const Src& src) { eigen_internal_assert(src.innerSize()==src.size()); typedef internal::evaluator SrcEvaluatorType; SrcEvaluatorType srcEval(src); for(typename SrcEvaluatorType::InnerIterator it(srcEval, 0); it; ++it) dst.insert(it.index()) = it.value(); } }; template< typename Dest, typename Src> struct sparse_vector_assign_selector { static void run(Dest& dst, const Src& src) { eigen_internal_assert(src.outerSize()==src.size()); typedef internal::evaluator SrcEvaluatorType; SrcEvaluatorType srcEval(src); for(Index i=0; i struct sparse_vector_assign_selector { static void run(Dest& dst, const Src& src) { if(src.outerSize()==1) sparse_vector_assign_selector::run(dst, src); else sparse_vector_assign_selector::run(dst, src); } }; } } // end namespace Eigen #endif // EIGEN_SPARSEVECTOR_H