// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_PATCH_H #define EIGEN_CXX11_TENSOR_TENSOR_PATCH_H namespace Eigen { /** \class TensorPatch * \ingroup CXX11_Tensor_Module * * \brief Tensor patch class. * * */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef traits XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = XprTraits::NumDimensions + 1; static const int Layout = XprTraits::Layout; }; template struct eval, Eigen::Dense> { typedef const TensorPatchOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorPatchOp type; }; } // end namespace internal template class TensorPatchOp : public TensorBase, ReadOnlyAccessors> { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorPatchOp(const XprType& expr, const PatchDim& patch_dims) : m_xpr(expr), m_patch_dims(patch_dims) {} EIGEN_DEVICE_FUNC const PatchDim& patch_dims() const { return m_patch_dims; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } protected: typename XprType::Nested m_xpr; const PatchDim m_patch_dims; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorPatchOp XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size::Dimensions>::value + 1; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = internal::unpacket_traits::size; enum { IsAligned = false, PacketAccess = TensorEvaluator::PacketAccess, Layout = TensorEvaluator::Layout, CoordAccess = false, RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { Index num_patches = 1; const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); const PatchDim& patch_dims = op.patch_dims(); if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = 0; i < NumDims-1; ++i) { m_dimensions[i] = patch_dims[i]; num_patches *= (input_dims[i] - patch_dims[i] + 1); } m_dimensions[NumDims-1] = num_patches; m_inputStrides[0] = 1; m_patchStrides[0] = 1; for (int i = 1; i < NumDims-1; ++i) { m_inputStrides[i] = m_inputStrides[i-1] * input_dims[i-1]; m_patchStrides[i] = m_patchStrides[i-1] * (input_dims[i-1] - patch_dims[i-1] + 1); } m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { m_outputStrides[i] = m_outputStrides[i-1] * m_dimensions[i-1]; } } else { for (int i = 0; i < NumDims-1; ++i) { m_dimensions[i+1] = patch_dims[i]; num_patches *= (input_dims[i] - patch_dims[i] + 1); } m_dimensions[0] = num_patches; m_inputStrides[NumDims-2] = 1; m_patchStrides[NumDims-2] = 1; for (int i = NumDims-3; i >= 0; --i) { m_inputStrides[i] = m_inputStrides[i+1] * input_dims[i+1]; m_patchStrides[i] = m_patchStrides[i+1] * (input_dims[i+1] - patch_dims[i+1] + 1); } m_outputStrides[NumDims-1] = 1; for (int i = NumDims-2; i >= 0; --i) { m_outputStrides[i] = m_outputStrides[i+1] * m_dimensions[i+1]; } } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { Index output_stride_index = (static_cast(Layout) == static_cast(ColMajor)) ? NumDims - 1 : 0; // Find the location of the first element of the patch. Index patchIndex = index / m_outputStrides[output_stride_index]; // Find the offset of the element wrt the location of the first element. Index patchOffset = index - patchIndex * m_outputStrides[output_stride_index]; Index inputIndex = 0; if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = NumDims - 2; i > 0; --i) { const Index patchIdx = patchIndex / m_patchStrides[i]; patchIndex -= patchIdx * m_patchStrides[i]; const Index offsetIdx = patchOffset / m_outputStrides[i]; patchOffset -= offsetIdx * m_outputStrides[i]; inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i]; } } else { for (int i = 0; i < NumDims - 2; ++i) { const Index patchIdx = patchIndex / m_patchStrides[i]; patchIndex -= patchIdx * m_patchStrides[i]; const Index offsetIdx = patchOffset / m_outputStrides[i+1]; patchOffset -= offsetIdx * m_outputStrides[i+1]; inputIndex += (patchIdx + offsetIdx) * m_inputStrides[i]; } } inputIndex += (patchIndex + patchOffset); return m_impl.coeff(inputIndex); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); Index output_stride_index = (static_cast(Layout) == static_cast(ColMajor)) ? NumDims - 1 : 0; Index indices[2] = {index, index + PacketSize - 1}; Index patchIndices[2] = {indices[0] / m_outputStrides[output_stride_index], indices[1] / m_outputStrides[output_stride_index]}; Index patchOffsets[2] = {indices[0] - patchIndices[0] * m_outputStrides[output_stride_index], indices[1] - patchIndices[1] * m_outputStrides[output_stride_index]}; Index inputIndices[2] = {0, 0}; if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = NumDims - 2; i > 0; --i) { const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i], patchIndices[1] / m_patchStrides[i]}; patchIndices[0] -= patchIdx[0] * m_patchStrides[i]; patchIndices[1] -= patchIdx[1] * m_patchStrides[i]; const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i], patchOffsets[1] / m_outputStrides[i]}; patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i]; patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i]; inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i]; inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i]; } } else { for (int i = 0; i < NumDims - 2; ++i) { const Index patchIdx[2] = {patchIndices[0] / m_patchStrides[i], patchIndices[1] / m_patchStrides[i]}; patchIndices[0] -= patchIdx[0] * m_patchStrides[i]; patchIndices[1] -= patchIdx[1] * m_patchStrides[i]; const Index offsetIdx[2] = {patchOffsets[0] / m_outputStrides[i+1], patchOffsets[1] / m_outputStrides[i+1]}; patchOffsets[0] -= offsetIdx[0] * m_outputStrides[i+1]; patchOffsets[1] -= offsetIdx[1] * m_outputStrides[i+1]; inputIndices[0] += (patchIdx[0] + offsetIdx[0]) * m_inputStrides[i]; inputIndices[1] += (patchIdx[1] + offsetIdx[1]) * m_inputStrides[i]; } } inputIndices[0] += (patchIndices[0] + patchOffsets[0]); inputIndices[1] += (patchIndices[1] + patchOffsets[1]); if (inputIndices[1] - inputIndices[0] == PacketSize - 1) { PacketReturnType rslt = m_impl.template packet(inputIndices[0]); return rslt; } else { EIGEN_ALIGN_MAX CoeffReturnType values[PacketSize]; values[0] = m_impl.coeff(inputIndices[0]); values[PacketSize-1] = m_impl.coeff(inputIndices[1]); for (int i = 1; i < PacketSize-1; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload(values); return rslt; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double compute_cost = NumDims * (TensorOpCost::DivCost() + TensorOpCost::MulCost() + 2 * TensorOpCost::AddCost()); return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, vectorized, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: Dimensions m_dimensions; array m_outputStrides; array m_inputStrides; array m_patchStrides; TensorEvaluator m_impl; }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_PATCH_H