// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2010 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_DENSECOEFFSBASE_H #define EIGEN_DENSECOEFFSBASE_H namespace Eigen { namespace internal { template struct add_const_on_value_type_if_arithmetic { typedef typename conditional::value, T, typename add_const_on_value_type::type>::type type; }; } /** \brief Base class providing read-only coefficient access to matrices and arrays. * \ingroup Core_Module * \tparam Derived Type of the derived class * \tparam #ReadOnlyAccessors Constant indicating read-only access * * This class defines the \c operator() \c const function and friends, which can be used to read specific * entries of a matrix or array. * * \sa DenseCoeffsBase, DenseCoeffsBase, * \ref TopicClassHierarchy */ template class DenseCoeffsBase : public EigenBase { public: typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; // Explanation for this CoeffReturnType typedef. // - This is the return type of the coeff() method. // - The LvalueBit means exactly that we can offer a coeffRef() method, which means exactly that we can get references // to coeffs, which means exactly that we can have coeff() return a const reference (as opposed to returning a value). // - The is_artihmetic check is required since "const int", "const double", etc. will cause warnings on some systems // while the declaration of "const T", where T is a non arithmetic type does not. Always returning "const Scalar&" is // not possible, since the underlying expressions might not offer a valid address the reference could be referring to. typedef typename internal::conditional::Flags&LvalueBit), const Scalar&, typename internal::conditional::value, Scalar, const Scalar>::type >::type CoeffReturnType; typedef typename internal::add_const_on_value_type_if_arithmetic< typename internal::packet_traits::type >::type PacketReturnType; typedef EigenBase Base; using Base::rows; using Base::cols; using Base::size; using Base::derived; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index rowIndexByOuterInner(Index outer, Index inner) const { return int(Derived::RowsAtCompileTime) == 1 ? 0 : int(Derived::ColsAtCompileTime) == 1 ? inner : int(Derived::Flags)&RowMajorBit ? outer : inner; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index colIndexByOuterInner(Index outer, Index inner) const { return int(Derived::ColsAtCompileTime) == 1 ? 0 : int(Derived::RowsAtCompileTime) == 1 ? inner : int(Derived::Flags)&RowMajorBit ? inner : outer; } /** Short version: don't use this function, use * \link operator()(Index,Index) const \endlink instead. * * Long version: this function is similar to * \link operator()(Index,Index) const \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameters \a row and \a col are in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator()(Index,Index) const \endlink. * * \sa operator()(Index,Index) const, coeffRef(Index,Index), coeff(Index) const */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index row, Index col) const { eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return internal::evaluator(derived()).coeff(row,col); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeffByOuterInner(Index outer, Index inner) const { return coeff(rowIndexByOuterInner(outer, inner), colIndexByOuterInner(outer, inner)); } /** \returns the coefficient at given the given row and column. * * \sa operator()(Index,Index), operator[](Index) */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType operator()(Index row, Index col) const { eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return coeff(row, col); } /** Short version: don't use this function, use * \link operator[](Index) const \endlink instead. * * Long version: this function is similar to * \link operator[](Index) const \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameter \a index is in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator[](Index) const \endlink. * * \sa operator[](Index) const, coeffRef(Index), coeff(Index,Index) const */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) eigen_internal_assert(index >= 0 && index < size()); return internal::evaluator(derived()).coeff(index); } /** \returns the coefficient at given index. * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, * z() const, w() const */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType operator[](Index index) const { EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) eigen_assert(index >= 0 && index < size()); return coeff(index); } /** \returns the coefficient at given index. * * This is synonymous to operator[](Index) const. * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](Index), operator()(Index,Index) const, x() const, y() const, * z() const, w() const */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType operator()(Index index) const { eigen_assert(index >= 0 && index < size()); return coeff(index); } /** equivalent to operator[](0). */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType x() const { return (*this)[0]; } /** equivalent to operator[](1). */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType y() const { EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS); return (*this)[1]; } /** equivalent to operator[](2). */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType z() const { EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS); return (*this)[2]; } /** equivalent to operator[](3). */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType w() const { EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS); return (*this)[3]; } /** \internal * \returns the packet of coefficients starting at the given row and column. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit. * * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template EIGEN_STRONG_INLINE PacketReturnType packet(Index row, Index col) const { typedef typename internal::packet_traits::type DefaultPacketType; eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return internal::evaluator(derived()).template packet(row,col); } /** \internal */ template EIGEN_STRONG_INLINE PacketReturnType packetByOuterInner(Index outer, Index inner) const { return packet(rowIndexByOuterInner(outer, inner), colIndexByOuterInner(outer, inner)); } /** \internal * \returns the packet of coefficients starting at the given index. It is your responsibility * to ensure that a packet really starts there. This method is only available on expressions having the * PacketAccessBit and the LinearAccessBit. * * The \a LoadMode parameter may have the value \a #Aligned or \a #Unaligned. Its effect is to select * the appropriate vectorization instruction. Aligned access is faster, but is only possible for packets * starting at an address which is a multiple of the packet size. */ template EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) typedef typename internal::packet_traits::type DefaultPacketType; eigen_internal_assert(index >= 0 && index < size()); return internal::evaluator(derived()).template packet(index); } protected: // explanation: DenseBase is doing "using ..." on the methods from DenseCoeffsBase. // But some methods are only available in the DirectAccess case. // So we add dummy methods here with these names, so that "using... " doesn't fail. // It's not private so that the child class DenseBase can access them, and it's not public // either since it's an implementation detail, so has to be protected. void coeffRef(); void coeffRefByOuterInner(); void writePacket(); void writePacketByOuterInner(); void copyCoeff(); void copyCoeffByOuterInner(); void copyPacket(); void copyPacketByOuterInner(); void stride(); void innerStride(); void outerStride(); void rowStride(); void colStride(); }; /** \brief Base class providing read/write coefficient access to matrices and arrays. * \ingroup Core_Module * \tparam Derived Type of the derived class * \tparam #WriteAccessors Constant indicating read/write access * * This class defines the non-const \c operator() function and friends, which can be used to write specific * entries of a matrix or array. This class inherits DenseCoeffsBase which * defines the const variant for reading specific entries. * * \sa DenseCoeffsBase, \ref TopicClassHierarchy */ template class DenseCoeffsBase : public DenseCoeffsBase { public: typedef DenseCoeffsBase Base; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; using Base::coeff; using Base::rows; using Base::cols; using Base::size; using Base::derived; using Base::rowIndexByOuterInner; using Base::colIndexByOuterInner; using Base::operator[]; using Base::operator(); using Base::x; using Base::y; using Base::z; using Base::w; /** Short version: don't use this function, use * \link operator()(Index,Index) \endlink instead. * * Long version: this function is similar to * \link operator()(Index,Index) \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameters \a row and \a col are in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator()(Index,Index) \endlink. * * \sa operator()(Index,Index), coeff(Index, Index) const, coeffRef(Index) */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index row, Index col) { eigen_internal_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return internal::evaluator(derived()).coeffRef(row,col); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRefByOuterInner(Index outer, Index inner) { return coeffRef(rowIndexByOuterInner(outer, inner), colIndexByOuterInner(outer, inner)); } /** \returns a reference to the coefficient at given the given row and column. * * \sa operator[](Index) */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index row, Index col) { eigen_assert(row >= 0 && row < rows() && col >= 0 && col < cols()); return coeffRef(row, col); } /** Short version: don't use this function, use * \link operator[](Index) \endlink instead. * * Long version: this function is similar to * \link operator[](Index) \endlink, but without the assertion. * Use this for limiting the performance cost of debugging code when doing * repeated coefficient access. Only use this when it is guaranteed that the * parameters \a row and \a col are in range. * * If EIGEN_INTERNAL_DEBUGGING is defined, an assertion will be made, making this * function equivalent to \link operator[](Index) \endlink. * * \sa operator[](Index), coeff(Index) const, coeffRef(Index,Index) */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& coeffRef(Index index) { EIGEN_STATIC_ASSERT(internal::evaluator::Flags & LinearAccessBit, THIS_COEFFICIENT_ACCESSOR_TAKING_ONE_ACCESS_IS_ONLY_FOR_EXPRESSIONS_ALLOWING_LINEAR_ACCESS) eigen_internal_assert(index >= 0 && index < size()); return internal::evaluator(derived()).coeffRef(index); } /** \returns a reference to the coefficient at given index. * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator[](Index index) { EIGEN_STATIC_ASSERT(Derived::IsVectorAtCompileTime, THE_BRACKET_OPERATOR_IS_ONLY_FOR_VECTORS__USE_THE_PARENTHESIS_OPERATOR_INSTEAD) eigen_assert(index >= 0 && index < size()); return coeffRef(index); } /** \returns a reference to the coefficient at given index. * * This is synonymous to operator[](Index). * * This method is allowed only for vector expressions, and for matrix expressions having the LinearAccessBit. * * \sa operator[](Index) const, operator()(Index,Index), x(), y(), z(), w() */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& operator()(Index index) { eigen_assert(index >= 0 && index < size()); return coeffRef(index); } /** equivalent to operator[](0). */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& x() { return (*this)[0]; } /** equivalent to operator[](1). */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& y() { EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=2, OUT_OF_RANGE_ACCESS); return (*this)[1]; } /** equivalent to operator[](2). */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& z() { EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=3, OUT_OF_RANGE_ACCESS); return (*this)[2]; } /** equivalent to operator[](3). */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Scalar& w() { EIGEN_STATIC_ASSERT(Derived::SizeAtCompileTime==-1 || Derived::SizeAtCompileTime>=4, OUT_OF_RANGE_ACCESS); return (*this)[3]; } }; /** \brief Base class providing direct read-only coefficient access to matrices and arrays. * \ingroup Core_Module * \tparam Derived Type of the derived class * \tparam #DirectAccessors Constant indicating direct access * * This class defines functions to work with strides which can be used to access entries directly. This class * inherits DenseCoeffsBase which defines functions to access entries read-only using * \c operator() . * * \sa \blank \ref TopicClassHierarchy */ template class DenseCoeffsBase : public DenseCoeffsBase { public: typedef DenseCoeffsBase Base; typedef typename internal::traits::Scalar Scalar; typedef typename NumTraits::Real RealScalar; using Base::rows; using Base::cols; using Base::size; using Base::derived; /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. * * \sa outerStride(), rowStride(), colStride() */ EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().innerStride(); } /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns * in a column-major matrix). * * \sa innerStride(), rowStride(), colStride() */ EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().outerStride(); } // FIXME shall we remove it ? inline Index stride() const { return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); } /** \returns the pointer increment between two consecutive rows. * * \sa innerStride(), outerStride(), colStride() */ EIGEN_DEVICE_FUNC inline Index rowStride() const { return Derived::IsRowMajor ? outerStride() : innerStride(); } /** \returns the pointer increment between two consecutive columns. * * \sa innerStride(), outerStride(), rowStride() */ EIGEN_DEVICE_FUNC inline Index colStride() const { return Derived::IsRowMajor ? innerStride() : outerStride(); } }; /** \brief Base class providing direct read/write coefficient access to matrices and arrays. * \ingroup Core_Module * \tparam Derived Type of the derived class * \tparam #DirectWriteAccessors Constant indicating direct access * * This class defines functions to work with strides which can be used to access entries directly. This class * inherits DenseCoeffsBase which defines functions to access entries read/write using * \c operator(). * * \sa \blank \ref TopicClassHierarchy */ template class DenseCoeffsBase : public DenseCoeffsBase { public: typedef DenseCoeffsBase Base; typedef typename internal::traits::Scalar Scalar; typedef typename NumTraits::Real RealScalar; using Base::rows; using Base::cols; using Base::size; using Base::derived; /** \returns the pointer increment between two consecutive elements within a slice in the inner direction. * * \sa outerStride(), rowStride(), colStride() */ EIGEN_DEVICE_FUNC inline Index innerStride() const { return derived().innerStride(); } /** \returns the pointer increment between two consecutive inner slices (for example, between two consecutive columns * in a column-major matrix). * * \sa innerStride(), rowStride(), colStride() */ EIGEN_DEVICE_FUNC inline Index outerStride() const { return derived().outerStride(); } // FIXME shall we remove it ? inline Index stride() const { return Derived::IsVectorAtCompileTime ? innerStride() : outerStride(); } /** \returns the pointer increment between two consecutive rows. * * \sa innerStride(), outerStride(), colStride() */ EIGEN_DEVICE_FUNC inline Index rowStride() const { return Derived::IsRowMajor ? outerStride() : innerStride(); } /** \returns the pointer increment between two consecutive columns. * * \sa innerStride(), outerStride(), rowStride() */ EIGEN_DEVICE_FUNC inline Index colStride() const { return Derived::IsRowMajor ? innerStride() : outerStride(); } }; namespace internal { template struct first_aligned_impl { static inline Index run(const Derived&) { return 0; } }; template struct first_aligned_impl { static inline Index run(const Derived& m) { return internal::first_aligned(m.data(), m.size()); } }; /** \internal \returns the index of the first element of the array stored by \a m that is properly aligned with respect to \a Alignment for vectorization. * * \tparam Alignment requested alignment in Bytes. * * There is also the variant first_aligned(const Scalar*, Integer) defined in Memory.h. See it for more * documentation. */ template static inline Index first_aligned(const DenseBase& m) { enum { ReturnZero = (int(evaluator::Alignment) >= Alignment) || !(Derived::Flags & DirectAccessBit) }; return first_aligned_impl::run(m.derived()); } template static inline Index first_default_aligned(const DenseBase& m) { typedef typename Derived::Scalar Scalar; typedef typename packet_traits::type DefaultPacketType; return internal::first_aligned::alignment),Derived>(m); } template::ret> struct inner_stride_at_compile_time { enum { ret = traits::InnerStrideAtCompileTime }; }; template struct inner_stride_at_compile_time { enum { ret = 0 }; }; template::ret> struct outer_stride_at_compile_time { enum { ret = traits::OuterStrideAtCompileTime }; }; template struct outer_stride_at_compile_time { enum { ret = 0 }; }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_DENSECOEFFSBASE_H