// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #if defined(EIGEN_USE_GPU) && !defined(EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H) #define EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H namespace Eigen { static const int kCudaScratchSize = 1024; // This defines an interface that GPUDevice can take to use // CUDA streams underneath. class StreamInterface { public: virtual ~StreamInterface() {} virtual const cudaStream_t& stream() const = 0; virtual const cudaDeviceProp& deviceProperties() const = 0; // Allocate memory on the actual device where the computation will run virtual void* allocate(size_t num_bytes) const = 0; virtual void deallocate(void* buffer) const = 0; // Return a scratchpad buffer of size 1k virtual void* scratchpad() const = 0; // Return a semaphore. The semaphore is initially initialized to 0, and // each kernel using it is responsible for resetting to 0 upon completion // to maintain the invariant that the semaphore is always equal to 0 upon // each kernel start. virtual unsigned int* semaphore() const = 0; }; static cudaDeviceProp* m_deviceProperties; static bool m_devicePropInitialized = false; static void initializeDeviceProp() { if (!m_devicePropInitialized) { // Attempts to ensure proper behavior in the case of multiple threads // calling this function simultaneously. This would be trivial to // implement if we could use std::mutex, but unfortunately mutex don't // compile with nvcc, so we resort to atomics and thread fences instead. // Note that if the caller uses a compiler that doesn't support c++11 we // can't ensure that the initialization is thread safe. #if __cplusplus >= 201103L static std::atomic first(true); if (first.exchange(false)) { #else static bool first = true; if (first) { first = false; #endif // We're the first thread to reach this point. int num_devices; cudaError_t status = cudaGetDeviceCount(&num_devices); if (status != cudaSuccess) { std::cerr << "Failed to get the number of CUDA devices: " << cudaGetErrorString(status) << std::endl; assert(status == cudaSuccess); } m_deviceProperties = new cudaDeviceProp[num_devices]; for (int i = 0; i < num_devices; ++i) { status = cudaGetDeviceProperties(&m_deviceProperties[i], i); if (status != cudaSuccess) { std::cerr << "Failed to initialize CUDA device #" << i << ": " << cudaGetErrorString(status) << std::endl; assert(status == cudaSuccess); } } #if __cplusplus >= 201103L std::atomic_thread_fence(std::memory_order_release); #endif m_devicePropInitialized = true; } else { // Wait for the other thread to inititialize the properties. while (!m_devicePropInitialized) { #if __cplusplus >= 201103L std::atomic_thread_fence(std::memory_order_acquire); #endif sleep(1); } } } } static const cudaStream_t default_stream = cudaStreamDefault; class CudaStreamDevice : public StreamInterface { public: // Use the default stream on the current device CudaStreamDevice() : stream_(&default_stream), scratch_(NULL), semaphore_(NULL) { cudaGetDevice(&device_); initializeDeviceProp(); } // Use the default stream on the specified device CudaStreamDevice(int device) : stream_(&default_stream), device_(device), scratch_(NULL), semaphore_(NULL) { initializeDeviceProp(); } // Use the specified stream. Note that it's the // caller responsibility to ensure that the stream can run on // the specified device. If no device is specified the code // assumes that the stream is associated to the current gpu device. CudaStreamDevice(const cudaStream_t* stream, int device = -1) : stream_(stream), device_(device), scratch_(NULL), semaphore_(NULL) { if (device < 0) { cudaGetDevice(&device_); } else { int num_devices; cudaError_t err = cudaGetDeviceCount(&num_devices); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); assert(device < num_devices); device_ = device; } initializeDeviceProp(); } virtual ~CudaStreamDevice() { if (scratch_) { deallocate(scratch_); } } const cudaStream_t& stream() const { return *stream_; } const cudaDeviceProp& deviceProperties() const { return m_deviceProperties[device_]; } virtual void* allocate(size_t num_bytes) const { cudaError_t err = cudaSetDevice(device_); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); void* result; err = cudaMalloc(&result, num_bytes); assert(err == cudaSuccess); assert(result != NULL); return result; } virtual void deallocate(void* buffer) const { cudaError_t err = cudaSetDevice(device_); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); assert(buffer != NULL); err = cudaFree(buffer); assert(err == cudaSuccess); } virtual void* scratchpad() const { if (scratch_ == NULL) { scratch_ = allocate(kCudaScratchSize + sizeof(unsigned int)); } return scratch_; } virtual unsigned int* semaphore() const { if (semaphore_ == NULL) { char* scratch = static_cast(scratchpad()) + kCudaScratchSize; semaphore_ = reinterpret_cast(scratch); cudaError_t err = cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); } return semaphore_; } private: const cudaStream_t* stream_; int device_; mutable void* scratch_; mutable unsigned int* semaphore_; }; struct GpuDevice { // The StreamInterface is not owned: the caller is // responsible for its initialization and eventual destruction. explicit GpuDevice(const StreamInterface* stream) : stream_(stream), max_blocks_(INT_MAX) { eigen_assert(stream); } explicit GpuDevice(const StreamInterface* stream, int num_blocks) : stream_(stream), max_blocks_(num_blocks) { eigen_assert(stream); } // TODO(bsteiner): This is an internal API, we should not expose it. EIGEN_STRONG_INLINE const cudaStream_t& stream() const { return stream_->stream(); } EIGEN_STRONG_INLINE void* allocate(size_t num_bytes) const { return stream_->allocate(num_bytes); } EIGEN_STRONG_INLINE void deallocate(void* buffer) const { stream_->deallocate(buffer); } EIGEN_STRONG_INLINE void* scratchpad() const { return stream_->scratchpad(); } EIGEN_STRONG_INLINE unsigned int* semaphore() const { return stream_->semaphore(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memcpy(void* dst, const void* src, size_t n) const { #ifndef __CUDA_ARCH__ cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToDevice, stream_->stream()); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); #else eigen_assert(false && "The default device should be used instead to generate kernel code"); #endif } EIGEN_STRONG_INLINE void memcpyHostToDevice(void* dst, const void* src, size_t n) const { cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyHostToDevice, stream_->stream()); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); } EIGEN_STRONG_INLINE void memcpyDeviceToHost(void* dst, const void* src, size_t n) const { cudaError_t err = cudaMemcpyAsync(dst, src, n, cudaMemcpyDeviceToHost, stream_->stream()); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void memset(void* buffer, int c, size_t n) const { #ifndef __CUDA_ARCH__ cudaError_t err = cudaMemsetAsync(buffer, c, n, stream_->stream()); EIGEN_UNUSED_VARIABLE(err) assert(err == cudaSuccess); #else eigen_assert(false && "The default device should be used instead to generate kernel code"); #endif } EIGEN_STRONG_INLINE size_t numThreads() const { // FIXME return 32; } EIGEN_STRONG_INLINE size_t firstLevelCacheSize() const { // FIXME return 48*1024; } EIGEN_STRONG_INLINE size_t lastLevelCacheSize() const { // We won't try to take advantage of the l2 cache for the time being, and // there is no l3 cache on cuda devices. return firstLevelCacheSize(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void synchronize() const { #if defined(__CUDACC__) && !defined(__CUDA_ARCH__) cudaError_t err = cudaStreamSynchronize(stream_->stream()); if (err != cudaSuccess) { std::cerr << "Error detected in CUDA stream: " << cudaGetErrorString(err) << std::endl; assert(err == cudaSuccess); } #else assert(false && "The default device should be used instead to generate kernel code"); #endif } EIGEN_STRONG_INLINE int getNumCudaMultiProcessors() const { return stream_->deviceProperties().multiProcessorCount; } EIGEN_STRONG_INLINE int maxCudaThreadsPerBlock() const { return stream_->deviceProperties().maxThreadsPerBlock; } EIGEN_STRONG_INLINE int maxCudaThreadsPerMultiProcessor() const { return stream_->deviceProperties().maxThreadsPerMultiProcessor; } EIGEN_STRONG_INLINE int sharedMemPerBlock() const { return stream_->deviceProperties().sharedMemPerBlock; } EIGEN_STRONG_INLINE int majorDeviceVersion() const { return stream_->deviceProperties().major; } EIGEN_STRONG_INLINE int minorDeviceVersion() const { return stream_->deviceProperties().minor; } EIGEN_STRONG_INLINE int maxBlocks() const { return max_blocks_; } // This function checks if the CUDA runtime recorded an error for the // underlying stream device. inline bool ok() const { #ifdef __CUDACC__ cudaError_t error = cudaStreamQuery(stream_->stream()); return (error == cudaSuccess) || (error == cudaErrorNotReady); #else return false; #endif } private: const StreamInterface* stream_; int max_blocks_; }; #define LAUNCH_CUDA_KERNEL(kernel, gridsize, blocksize, sharedmem, device, ...) \ (kernel) <<< (gridsize), (blocksize), (sharedmem), (device).stream() >>> (__VA_ARGS__); \ assert(cudaGetLastError() == cudaSuccess); // FIXME: Should be device and kernel specific. #ifdef __CUDACC__ static EIGEN_DEVICE_FUNC inline void setCudaSharedMemConfig(cudaSharedMemConfig config) { #ifndef __CUDA_ARCH__ cudaError_t status = cudaDeviceSetSharedMemConfig(config); EIGEN_UNUSED_VARIABLE(status) assert(status == cudaSuccess); #else EIGEN_UNUSED_VARIABLE(config) #endif } #endif } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_DEVICE_CUDA_H