// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_BINARY_FUNCTORS_H #define EIGEN_BINARY_FUNCTORS_H namespace Eigen { namespace internal { //---------- associative binary functors ---------- template struct binary_op_base { typedef Arg1 first_argument_type; typedef Arg2 second_argument_type; }; /** \internal * \brief Template functor to compute the sum of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator+, class VectorwiseOp, DenseBase::sum() */ template struct scalar_sum_op : binary_op_base { typedef typename ScalarBinaryOpTraits::ReturnType result_type; #ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN EIGEN_EMPTY_STRUCT_CTOR(scalar_sum_op) #else scalar_sum_op() { EIGEN_SCALAR_BINARY_OP_PLUGIN } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a + b; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::padd(a,b); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const { return internal::predux(a); } }; template struct functor_traits > { enum { Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, // rough estimate! PacketAccess = is_same::value && packet_traits::HasAdd && packet_traits::HasAdd // TODO vectorize mixed sum }; }; /** \internal * \brief Template specialization to deprecate the summation of boolean expressions. * This is required to solve Bug 426. * \sa DenseBase::count(), DenseBase::any(), ArrayBase::cast(), MatrixBase::cast() */ template<> struct scalar_sum_op : scalar_sum_op { EIGEN_DEPRECATED scalar_sum_op() {} }; /** \internal * \brief Template functor to compute the product of two scalars * * \sa class CwiseBinaryOp, Cwise::operator*(), class VectorwiseOp, MatrixBase::redux() */ template struct scalar_product_op : binary_op_base { typedef typename ScalarBinaryOpTraits::ReturnType result_type; #ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN EIGEN_EMPTY_STRUCT_CTOR(scalar_product_op) #else scalar_product_op() { EIGEN_SCALAR_BINARY_OP_PLUGIN } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a * b; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmul(a,b); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const { return internal::predux_mul(a); } }; template struct functor_traits > { enum { Cost = (NumTraits::MulCost + NumTraits::MulCost)/2, // rough estimate! PacketAccess = is_same::value && packet_traits::HasMul && packet_traits::HasMul // TODO vectorize mixed product }; }; /** \internal * \brief Template functor to compute the conjugate product of two scalars * * This is a short cut for conj(x) * y which is needed for optimization purpose; in Eigen2 support mode, this becomes x * conj(y) */ template struct scalar_conj_product_op : binary_op_base { enum { Conj = NumTraits::IsComplex }; typedef typename ScalarBinaryOpTraits::ReturnType result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_conj_product_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return conj_helper().pmul(a,b); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return conj_helper().pmul(a,b); } }; template struct functor_traits > { enum { Cost = NumTraits::MulCost, PacketAccess = internal::is_same::value && packet_traits::HasMul }; }; /** \internal * \brief Template functor to compute the min of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMin, class VectorwiseOp, MatrixBase::minCoeff() */ template struct scalar_min_op : binary_op_base { typedef typename ScalarBinaryOpTraits::ReturnType result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_min_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return numext::mini(a, b); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmin(a,b); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const { return internal::predux_min(a); } }; template struct functor_traits > { enum { Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, PacketAccess = internal::is_same::value && packet_traits::HasMin }; }; /** \internal * \brief Template functor to compute the max of two scalars * * \sa class CwiseBinaryOp, MatrixBase::cwiseMax, class VectorwiseOp, MatrixBase::maxCoeff() */ template struct scalar_max_op : binary_op_base { typedef typename ScalarBinaryOpTraits::ReturnType result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_max_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return numext::maxi(a, b); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pmax(a,b); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type predux(const Packet& a) const { return internal::predux_max(a); } }; template struct functor_traits > { enum { Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, PacketAccess = internal::is_same::value && packet_traits::HasMax }; }; /** \internal * \brief Template functors for comparison of two scalars * \todo Implement packet-comparisons */ template struct scalar_cmp_op; template struct functor_traits > { enum { Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, PacketAccess = false }; }; template struct result_of(LhsScalar,RhsScalar)> { typedef bool type; }; template struct scalar_cmp_op : binary_op_base { typedef bool result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a==b;} }; template struct scalar_cmp_op : binary_op_base { typedef bool result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a struct scalar_cmp_op : binary_op_base { typedef bool result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a<=b;} }; template struct scalar_cmp_op : binary_op_base { typedef bool result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>b;} }; template struct scalar_cmp_op : binary_op_base { typedef bool result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a>=b;} }; template struct scalar_cmp_op : binary_op_base { typedef bool result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return !(a<=b || b<=a);} }; template struct scalar_cmp_op : binary_op_base { typedef bool result_type; EIGEN_EMPTY_STRUCT_CTOR(scalar_cmp_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator()(const LhsScalar& a, const RhsScalar& b) const {return a!=b;} }; /** \internal * \brief Template functor to compute the hypot of two \b positive \b and \b real scalars * * \sa MatrixBase::stableNorm(), class Redux */ template struct scalar_hypot_op : binary_op_base { EIGEN_EMPTY_STRUCT_CTOR(scalar_hypot_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Scalar operator() (const Scalar &x, const Scalar &y) const { // This functor is used by hypotNorm only for which it is faster to first apply abs // on all coefficients prior to reduction through hypot. // This way we avoid calling abs on positive and real entries, and this also permits // to seamlessly handle complexes. Otherwise we would have to handle both real and complexes // through the same functor... return internal::positive_real_hypot(x,y); } }; template struct functor_traits > { enum { Cost = 3 * NumTraits::AddCost + 2 * NumTraits::MulCost + 2 * scalar_div_cost::value, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the pow of two scalars */ template struct scalar_pow_op : binary_op_base { typedef typename ScalarBinaryOpTraits::ReturnType result_type; #ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN EIGEN_EMPTY_STRUCT_CTOR(scalar_pow_op) #else scalar_pow_op() { typedef Scalar LhsScalar; typedef Exponent RhsScalar; EIGEN_SCALAR_BINARY_OP_PLUGIN } #endif EIGEN_DEVICE_FUNC inline result_type operator() (const Scalar& a, const Exponent& b) const { return numext::pow(a, b); } }; template struct functor_traits > { enum { Cost = 5 * NumTraits::MulCost, PacketAccess = false }; }; //---------- non associative binary functors ---------- /** \internal * \brief Template functor to compute the difference of two scalars * * \sa class CwiseBinaryOp, MatrixBase::operator- */ template struct scalar_difference_op : binary_op_base { typedef typename ScalarBinaryOpTraits::ReturnType result_type; #ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN EIGEN_EMPTY_STRUCT_CTOR(scalar_difference_op) #else scalar_difference_op() { EIGEN_SCALAR_BINARY_OP_PLUGIN } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a - b; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::psub(a,b); } }; template struct functor_traits > { enum { Cost = (NumTraits::AddCost+NumTraits::AddCost)/2, PacketAccess = is_same::value && packet_traits::HasSub && packet_traits::HasSub }; }; /** \internal * \brief Template functor to compute the quotient of two scalars * * \sa class CwiseBinaryOp, Cwise::operator/() */ template struct scalar_quotient_op : binary_op_base { typedef typename ScalarBinaryOpTraits::ReturnType result_type; #ifndef EIGEN_SCALAR_BINARY_OP_PLUGIN EIGEN_EMPTY_STRUCT_CTOR(scalar_quotient_op) #else scalar_quotient_op() { EIGEN_SCALAR_BINARY_OP_PLUGIN } #endif EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const LhsScalar& a, const RhsScalar& b) const { return a / b; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a, const Packet& b) const { return internal::pdiv(a,b); } }; template struct functor_traits > { typedef typename scalar_quotient_op::result_type result_type; enum { PacketAccess = is_same::value && packet_traits::HasDiv && packet_traits::HasDiv, Cost = scalar_div_cost::value }; }; /** \internal * \brief Template functor to compute the and of two booleans * * \sa class CwiseBinaryOp, ArrayBase::operator&& */ struct scalar_boolean_and_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_and_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a && b; } }; template<> struct functor_traits { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the or of two booleans * * \sa class CwiseBinaryOp, ArrayBase::operator|| */ struct scalar_boolean_or_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_or_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a || b; } }; template<> struct functor_traits { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; /** \internal * \brief Template functor to compute the xor of two booleans * * \sa class CwiseBinaryOp, ArrayBase::operator^ */ struct scalar_boolean_xor_op { EIGEN_EMPTY_STRUCT_CTOR(scalar_boolean_xor_op) EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool operator() (const bool& a, const bool& b) const { return a ^ b; } }; template<> struct functor_traits { enum { Cost = NumTraits::AddCost, PacketAccess = false }; }; //---------- binary functors bound to a constant, thus appearing as a unary functor ---------- // The following two classes permits to turn any binary functor into a unary one with one argument bound to a constant value. // They are analogues to std::binder1st/binder2nd but with the following differences: // - they are compatible with packetOp // - they are portable across C++ versions (the std::binder* are deprecated in C++11) template struct bind1st_op : BinaryOp { typedef typename BinaryOp::first_argument_type first_argument_type; typedef typename BinaryOp::second_argument_type second_argument_type; typedef typename BinaryOp::result_type result_type; bind1st_op(const first_argument_type &val) : m_value(val) {} EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const second_argument_type& b) const { return BinaryOp::operator()(m_value,b); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& b) const { return BinaryOp::packetOp(internal::pset1(m_value), b); } first_argument_type m_value; }; template struct functor_traits > : functor_traits {}; template struct bind2nd_op : BinaryOp { typedef typename BinaryOp::first_argument_type first_argument_type; typedef typename BinaryOp::second_argument_type second_argument_type; typedef typename BinaryOp::result_type result_type; bind2nd_op(const second_argument_type &val) : m_value(val) {} EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const result_type operator() (const first_argument_type& a) const { return BinaryOp::operator()(a,m_value); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Packet packetOp(const Packet& a) const { return BinaryOp::packetOp(a,internal::pset1(m_value)); } second_argument_type m_value; }; template struct functor_traits > : functor_traits {}; } // end namespace internal } // end namespace Eigen #endif // EIGEN_BINARY_FUNCTORS_H