// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009-2010 Benoit Jacob // Copyright (C) 2013-2014 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_JACOBISVD_H #define EIGEN_JACOBISVD_H namespace Eigen { namespace internal { // forward declaration (needed by ICC) // the empty body is required by MSVC template::IsComplex> struct svd_precondition_2x2_block_to_be_real {}; /*** QR preconditioners (R-SVD) *** *** Their role is to reduce the problem of computing the SVD to the case of a square matrix. *** This approach, known as R-SVD, is an optimization for rectangular-enough matrices, and is a requirement for *** JacobiSVD which by itself is only able to work on square matrices. ***/ enum { PreconditionIfMoreColsThanRows, PreconditionIfMoreRowsThanCols }; template struct qr_preconditioner_should_do_anything { enum { a = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime <= MatrixType::RowsAtCompileTime, b = MatrixType::RowsAtCompileTime != Dynamic && MatrixType::ColsAtCompileTime != Dynamic && MatrixType::RowsAtCompileTime <= MatrixType::ColsAtCompileTime, ret = !( (QRPreconditioner == NoQRPreconditioner) || (Case == PreconditionIfMoreColsThanRows && bool(a)) || (Case == PreconditionIfMoreRowsThanCols && bool(b)) ) }; }; template::ret > struct qr_preconditioner_impl {}; template class qr_preconditioner_impl { public: void allocate(const JacobiSVD&) {} bool run(JacobiSVD&, const MatrixType&) { return false; } }; /*** preconditioner using FullPivHouseholderQR ***/ template class qr_preconditioner_impl { public: typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime }; typedef Matrix WorkspaceType; void allocate(const JacobiSVD& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.rows(), svd.cols()); } if (svd.m_computeFullU) m_workspace.resize(svd.rows()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.rows() > matrix.cols()) { m_qr.compute(matrix); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); if(svd.m_computeFullU) m_qr.matrixQ().evalTo(svd.m_matrixU, m_workspace); if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); return true; } return false; } private: typedef FullPivHouseholderQR QRType; QRType m_qr; WorkspaceType m_workspace; }; template class qr_preconditioner_impl { public: typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor)) : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor) : MatrixType::Options }; typedef Matrix TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD& svd) { if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.cols(), svd.rows()); } m_adjoint.resize(svd.cols(), svd.rows()); if (svd.m_computeFullV) m_workspace.resize(svd.cols()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.cols() > matrix.rows()) { m_adjoint = matrix.adjoint(); m_qr.compute(m_adjoint); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); if(svd.m_computeFullV) m_qr.matrixQ().evalTo(svd.m_matrixV, m_workspace); if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); return true; } else return false; } private: typedef FullPivHouseholderQR QRType; QRType m_qr; TransposeTypeWithSameStorageOrder m_adjoint; typename internal::plain_row_type::type m_workspace; }; /*** preconditioner using ColPivHouseholderQR ***/ template class qr_preconditioner_impl { public: void allocate(const JacobiSVD& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.rows(), svd.cols()); } if (svd.m_computeFullU) m_workspace.resize(svd.rows()); else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.rows() > matrix.cols()) { m_qr.compute(matrix); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); else if(svd.m_computeThinU) { svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); } if(svd.computeV()) svd.m_matrixV = m_qr.colsPermutation(); return true; } return false; } private: typedef ColPivHouseholderQR QRType; QRType m_qr; typename internal::plain_col_type::type m_workspace; }; template class qr_preconditioner_impl { public: typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, TrOptions = RowsAtCompileTime==1 ? (MatrixType::Options & ~(RowMajor)) : ColsAtCompileTime==1 ? (MatrixType::Options | RowMajor) : MatrixType::Options }; typedef Matrix TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD& svd) { if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.cols(), svd.rows()); } if (svd.m_computeFullV) m_workspace.resize(svd.cols()); else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); m_adjoint.resize(svd.cols(), svd.rows()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.cols() > matrix.rows()) { m_adjoint = matrix.adjoint(); m_qr.compute(m_adjoint); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); else if(svd.m_computeThinV) { svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); } if(svd.computeU()) svd.m_matrixU = m_qr.colsPermutation(); return true; } else return false; } private: typedef ColPivHouseholderQR QRType; QRType m_qr; TransposeTypeWithSameStorageOrder m_adjoint; typename internal::plain_row_type::type m_workspace; }; /*** preconditioner using HouseholderQR ***/ template class qr_preconditioner_impl { public: void allocate(const JacobiSVD& svd) { if (svd.rows() != m_qr.rows() || svd.cols() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.rows(), svd.cols()); } if (svd.m_computeFullU) m_workspace.resize(svd.rows()); else if (svd.m_computeThinU) m_workspace.resize(svd.cols()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.rows() > matrix.cols()) { m_qr.compute(matrix); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.cols(),matrix.cols()).template triangularView(); if(svd.m_computeFullU) m_qr.householderQ().evalTo(svd.m_matrixU, m_workspace); else if(svd.m_computeThinU) { svd.m_matrixU.setIdentity(matrix.rows(), matrix.cols()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixU, m_workspace); } if(svd.computeV()) svd.m_matrixV.setIdentity(matrix.cols(), matrix.cols()); return true; } return false; } private: typedef HouseholderQR QRType; QRType m_qr; typename internal::plain_col_type::type m_workspace; }; template class qr_preconditioner_impl { public: typedef typename MatrixType::Scalar Scalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, Options = MatrixType::Options }; typedef Matrix TransposeTypeWithSameStorageOrder; void allocate(const JacobiSVD& svd) { if (svd.cols() != m_qr.rows() || svd.rows() != m_qr.cols()) { m_qr.~QRType(); ::new (&m_qr) QRType(svd.cols(), svd.rows()); } if (svd.m_computeFullV) m_workspace.resize(svd.cols()); else if (svd.m_computeThinV) m_workspace.resize(svd.rows()); m_adjoint.resize(svd.cols(), svd.rows()); } bool run(JacobiSVD& svd, const MatrixType& matrix) { if(matrix.cols() > matrix.rows()) { m_adjoint = matrix.adjoint(); m_qr.compute(m_adjoint); svd.m_workMatrix = m_qr.matrixQR().block(0,0,matrix.rows(),matrix.rows()).template triangularView().adjoint(); if(svd.m_computeFullV) m_qr.householderQ().evalTo(svd.m_matrixV, m_workspace); else if(svd.m_computeThinV) { svd.m_matrixV.setIdentity(matrix.cols(), matrix.rows()); m_qr.householderQ().applyThisOnTheLeft(svd.m_matrixV, m_workspace); } if(svd.computeU()) svd.m_matrixU.setIdentity(matrix.rows(), matrix.rows()); return true; } else return false; } private: typedef HouseholderQR QRType; QRType m_qr; TransposeTypeWithSameStorageOrder m_adjoint; typename internal::plain_row_type::type m_workspace; }; /*** 2x2 SVD implementation *** *** JacobiSVD consists in performing a series of 2x2 SVD subproblems ***/ template struct svd_precondition_2x2_block_to_be_real { typedef JacobiSVD SVD; typedef typename MatrixType::RealScalar RealScalar; static bool run(typename SVD::WorkMatrixType&, SVD&, Index, Index, RealScalar&) { return true; } }; template struct svd_precondition_2x2_block_to_be_real { typedef JacobiSVD SVD; typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; static bool run(typename SVD::WorkMatrixType& work_matrix, SVD& svd, Index p, Index q, RealScalar& maxDiagEntry) { using std::sqrt; using std::abs; Scalar z; JacobiRotation rot; RealScalar n = sqrt(numext::abs2(work_matrix.coeff(p,p)) + numext::abs2(work_matrix.coeff(q,p))); const RealScalar considerAsZero = (std::numeric_limits::min)(); const RealScalar precision = NumTraits::epsilon(); if(n==0) { // make sure first column is zero work_matrix.coeffRef(p,p) = work_matrix.coeffRef(q,p) = Scalar(0); if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) { // work_matrix.coeff(p,q) can be zero if work_matrix.coeff(q,p) is not zero but small enough to underflow when computing n z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); work_matrix.row(p) *= z; if(svd.computeU()) svd.m_matrixU.col(p) *= conj(z); } if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) { z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); work_matrix.row(q) *= z; if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); } // otherwise the second row is already zero, so we have nothing to do. } else { rot.c() = conj(work_matrix.coeff(p,p)) / n; rot.s() = work_matrix.coeff(q,p) / n; work_matrix.applyOnTheLeft(p,q,rot); if(svd.computeU()) svd.m_matrixU.applyOnTheRight(p,q,rot.adjoint()); if(abs(numext::imag(work_matrix.coeff(p,q)))>considerAsZero) { z = abs(work_matrix.coeff(p,q)) / work_matrix.coeff(p,q); work_matrix.col(q) *= z; if(svd.computeV()) svd.m_matrixV.col(q) *= z; } if(abs(numext::imag(work_matrix.coeff(q,q)))>considerAsZero) { z = abs(work_matrix.coeff(q,q)) / work_matrix.coeff(q,q); work_matrix.row(q) *= z; if(svd.computeU()) svd.m_matrixU.col(q) *= conj(z); } } // update largest diagonal entry maxDiagEntry = numext::maxi(maxDiagEntry,numext::maxi(abs(work_matrix.coeff(p,p)), abs(work_matrix.coeff(q,q)))); // and check whether the 2x2 block is already diagonal RealScalar threshold = numext::maxi(considerAsZero, precision * maxDiagEntry); return abs(work_matrix.coeff(p,q))>threshold || abs(work_matrix.coeff(q,p)) > threshold; } }; template struct traits > { typedef _MatrixType MatrixType; }; } // end namespace internal /** \ingroup SVD_Module * * * \class JacobiSVD * * \brief Two-sided Jacobi SVD decomposition of a rectangular matrix * * \tparam _MatrixType the type of the matrix of which we are computing the SVD decomposition * \tparam QRPreconditioner this optional parameter allows to specify the type of QR decomposition that will be used internally * for the R-SVD step for non-square matrices. See discussion of possible values below. * * SVD decomposition consists in decomposing any n-by-p matrix \a A as a product * \f[ A = U S V^* \f] * where \a U is a n-by-n unitary, \a V is a p-by-p unitary, and \a S is a n-by-p real positive matrix which is zero outside of its main diagonal; * the diagonal entries of S are known as the \em singular \em values of \a A and the columns of \a U and \a V are known as the left * and right \em singular \em vectors of \a A respectively. * * Singular values are always sorted in decreasing order. * * This JacobiSVD decomposition computes only the singular values by default. If you want \a U or \a V, you need to ask for them explicitly. * * You can ask for only \em thin \a U or \a V to be computed, meaning the following. In case of a rectangular n-by-p matrix, letting \a m be the * smaller value among \a n and \a p, there are only \a m singular vectors; the remaining columns of \a U and \a V do not correspond to actual * singular vectors. Asking for \em thin \a U or \a V means asking for only their \a m first columns to be formed. So \a U is then a n-by-m matrix, * and \a V is then a p-by-m matrix. Notice that thin \a U and \a V are all you need for (least squares) solving. * * Here's an example demonstrating basic usage: * \include JacobiSVD_basic.cpp * Output: \verbinclude JacobiSVD_basic.out * * This JacobiSVD class is a two-sided Jacobi R-SVD decomposition, ensuring optimal reliability and accuracy. The downside is that it's slower than * bidiagonalizing SVD algorithms for large square matrices; however its complexity is still \f$ O(n^2p) \f$ where \a n is the smaller dimension and * \a p is the greater dimension, meaning that it is still of the same order of complexity as the faster bidiagonalizing R-SVD algorithms. * In particular, like any R-SVD, it takes advantage of non-squareness in that its complexity is only linear in the greater dimension. * * If the input matrix has inf or nan coefficients, the result of the computation is undefined, but the computation is guaranteed to * terminate in finite (and reasonable) time. * * The possible values for QRPreconditioner are: * \li ColPivHouseholderQRPreconditioner is the default. In practice it's very safe. It uses column-pivoting QR. * \li FullPivHouseholderQRPreconditioner, is the safest and slowest. It uses full-pivoting QR. * Contrary to other QRs, it doesn't allow computing thin unitaries. * \li HouseholderQRPreconditioner is the fastest, and less safe and accurate than the pivoting variants. It uses non-pivoting QR. * This is very similar in safety and accuracy to the bidiagonalization process used by bidiagonalizing SVD algorithms (since bidiagonalization * is inherently non-pivoting). However the resulting SVD is still more reliable than bidiagonalizing SVDs because the Jacobi-based iterarive * process is more reliable than the optimized bidiagonal SVD iterations. * \li NoQRPreconditioner allows not to use a QR preconditioner at all. This is useful if you know that you will only be computing * JacobiSVD decompositions of square matrices. Non-square matrices require a QR preconditioner. Using this option will result in * faster compilation and smaller executable code. It won't significantly speed up computation, since JacobiSVD is always checking * if QR preconditioning is needed before applying it anyway. * * \sa MatrixBase::jacobiSvd() */ template class JacobiSVD : public SVDBase > { typedef SVDBase Base; public: typedef _MatrixType MatrixType; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime, DiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_DYNAMIC(RowsAtCompileTime,ColsAtCompileTime), MaxRowsAtCompileTime = MatrixType::MaxRowsAtCompileTime, MaxColsAtCompileTime = MatrixType::MaxColsAtCompileTime, MaxDiagSizeAtCompileTime = EIGEN_SIZE_MIN_PREFER_FIXED(MaxRowsAtCompileTime,MaxColsAtCompileTime), MatrixOptions = MatrixType::Options }; typedef typename Base::MatrixUType MatrixUType; typedef typename Base::MatrixVType MatrixVType; typedef typename Base::SingularValuesType SingularValuesType; typedef typename internal::plain_row_type::type RowType; typedef typename internal::plain_col_type::type ColType; typedef Matrix WorkMatrixType; /** \brief Default Constructor. * * The default constructor is useful in cases in which the user intends to * perform decompositions via JacobiSVD::compute(const MatrixType&). */ JacobiSVD() {} /** \brief Default Constructor with memory preallocation * * Like the default constructor but with preallocation of the internal data * according to the specified problem size. * \sa JacobiSVD() */ JacobiSVD(Index rows, Index cols, unsigned int computationOptions = 0) { allocate(rows, cols, computationOptions); } /** \brief Constructor performing the decomposition of given matrix. * * \param matrix the matrix to decompose * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, * #ComputeFullV, #ComputeThinV. * * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non-default) FullPivHouseholderQR preconditioner. */ explicit JacobiSVD(const MatrixType& matrix, unsigned int computationOptions = 0) { compute(matrix, computationOptions); } /** \brief Method performing the decomposition of given matrix using custom options. * * \param matrix the matrix to decompose * \param computationOptions optional parameter allowing to specify if you want full or thin U or V unitaries to be computed. * By default, none is computed. This is a bit-field, the possible bits are #ComputeFullU, #ComputeThinU, * #ComputeFullV, #ComputeThinV. * * Thin unitaries are only available if your matrix type has a Dynamic number of columns (for example MatrixXf). They also are not * available with the (non-default) FullPivHouseholderQR preconditioner. */ JacobiSVD& compute(const MatrixType& matrix, unsigned int computationOptions); /** \brief Method performing the decomposition of given matrix using current options. * * \param matrix the matrix to decompose * * This method uses the current \a computationOptions, as already passed to the constructor or to compute(const MatrixType&, unsigned int). */ JacobiSVD& compute(const MatrixType& matrix) { return compute(matrix, m_computationOptions); } using Base::computeU; using Base::computeV; using Base::rows; using Base::cols; using Base::rank; private: void allocate(Index rows, Index cols, unsigned int computationOptions); protected: using Base::m_matrixU; using Base::m_matrixV; using Base::m_singularValues; using Base::m_isInitialized; using Base::m_isAllocated; using Base::m_usePrescribedThreshold; using Base::m_computeFullU; using Base::m_computeThinU; using Base::m_computeFullV; using Base::m_computeThinV; using Base::m_computationOptions; using Base::m_nonzeroSingularValues; using Base::m_rows; using Base::m_cols; using Base::m_diagSize; using Base::m_prescribedThreshold; WorkMatrixType m_workMatrix; template friend struct internal::svd_precondition_2x2_block_to_be_real; template friend struct internal::qr_preconditioner_impl; internal::qr_preconditioner_impl m_qr_precond_morecols; internal::qr_preconditioner_impl m_qr_precond_morerows; MatrixType m_scaledMatrix; }; template void JacobiSVD::allocate(Eigen::Index rows, Eigen::Index cols, unsigned int computationOptions) { eigen_assert(rows >= 0 && cols >= 0); if (m_isAllocated && rows == m_rows && cols == m_cols && computationOptions == m_computationOptions) { return; } m_rows = rows; m_cols = cols; m_isInitialized = false; m_isAllocated = true; m_computationOptions = computationOptions; m_computeFullU = (computationOptions & ComputeFullU) != 0; m_computeThinU = (computationOptions & ComputeThinU) != 0; m_computeFullV = (computationOptions & ComputeFullV) != 0; m_computeThinV = (computationOptions & ComputeThinV) != 0; eigen_assert(!(m_computeFullU && m_computeThinU) && "JacobiSVD: you can't ask for both full and thin U"); eigen_assert(!(m_computeFullV && m_computeThinV) && "JacobiSVD: you can't ask for both full and thin V"); eigen_assert(EIGEN_IMPLIES(m_computeThinU || m_computeThinV, MatrixType::ColsAtCompileTime==Dynamic) && "JacobiSVD: thin U and V are only available when your matrix has a dynamic number of columns."); if (QRPreconditioner == FullPivHouseholderQRPreconditioner) { eigen_assert(!(m_computeThinU || m_computeThinV) && "JacobiSVD: can't compute thin U or thin V with the FullPivHouseholderQR preconditioner. " "Use the ColPivHouseholderQR preconditioner instead."); } m_diagSize = (std::min)(m_rows, m_cols); m_singularValues.resize(m_diagSize); if(RowsAtCompileTime==Dynamic) m_matrixU.resize(m_rows, m_computeFullU ? m_rows : m_computeThinU ? m_diagSize : 0); if(ColsAtCompileTime==Dynamic) m_matrixV.resize(m_cols, m_computeFullV ? m_cols : m_computeThinV ? m_diagSize : 0); m_workMatrix.resize(m_diagSize, m_diagSize); if(m_cols>m_rows) m_qr_precond_morecols.allocate(*this); if(m_rows>m_cols) m_qr_precond_morerows.allocate(*this); if(m_rows!=m_cols) m_scaledMatrix.resize(rows,cols); } template JacobiSVD& JacobiSVD::compute(const MatrixType& matrix, unsigned int computationOptions) { using std::abs; allocate(matrix.rows(), matrix.cols(), computationOptions); // currently we stop when we reach precision 2*epsilon as the last bit of precision can require an unreasonable number of iterations, // only worsening the precision of U and V as we accumulate more rotations const RealScalar precision = RealScalar(2) * NumTraits::epsilon(); // limit for denormal numbers to be considered zero in order to avoid infinite loops (see bug 286) const RealScalar considerAsZero = (std::numeric_limits::min)(); // Scaling factor to reduce over/under-flows RealScalar scale = matrix.cwiseAbs().maxCoeff(); if(scale==RealScalar(0)) scale = RealScalar(1); /*** step 1. The R-SVD step: we use a QR decomposition to reduce to the case of a square matrix */ if(m_rows!=m_cols) { m_scaledMatrix = matrix / scale; m_qr_precond_morecols.run(*this, m_scaledMatrix); m_qr_precond_morerows.run(*this, m_scaledMatrix); } else { m_workMatrix = matrix.block(0,0,m_diagSize,m_diagSize) / scale; if(m_computeFullU) m_matrixU.setIdentity(m_rows,m_rows); if(m_computeThinU) m_matrixU.setIdentity(m_rows,m_diagSize); if(m_computeFullV) m_matrixV.setIdentity(m_cols,m_cols); if(m_computeThinV) m_matrixV.setIdentity(m_cols, m_diagSize); } /*** step 2. The main Jacobi SVD iteration. ***/ RealScalar maxDiagEntry = m_workMatrix.cwiseAbs().diagonal().maxCoeff(); bool finished = false; while(!finished) { finished = true; // do a sweep: for all index pairs (p,q), perform SVD of the corresponding 2x2 sub-matrix for(Index p = 1; p < m_diagSize; ++p) { for(Index q = 0; q < p; ++q) { // if this 2x2 sub-matrix is not diagonal already... // notice that this comparison will evaluate to false if any NaN is involved, ensuring that NaN's don't // keep us iterating forever. Similarly, small denormal numbers are considered zero. RealScalar threshold = numext::maxi(considerAsZero, precision * maxDiagEntry); if(abs(m_workMatrix.coeff(p,q))>threshold || abs(m_workMatrix.coeff(q,p)) > threshold) { finished = false; // perform SVD decomposition of 2x2 sub-matrix corresponding to indices p,q to make it diagonal // the complex to real operation returns true if the updated 2x2 block is not already diagonal if(internal::svd_precondition_2x2_block_to_be_real::run(m_workMatrix, *this, p, q, maxDiagEntry)) { JacobiRotation j_left, j_right; internal::real_2x2_jacobi_svd(m_workMatrix, p, q, &j_left, &j_right); // accumulate resulting Jacobi rotations m_workMatrix.applyOnTheLeft(p,q,j_left); if(computeU()) m_matrixU.applyOnTheRight(p,q,j_left.transpose()); m_workMatrix.applyOnTheRight(p,q,j_right); if(computeV()) m_matrixV.applyOnTheRight(p,q,j_right); // keep track of the largest diagonal coefficient maxDiagEntry = numext::maxi(maxDiagEntry,numext::maxi(abs(m_workMatrix.coeff(p,p)), abs(m_workMatrix.coeff(q,q)))); } } } } } /*** step 3. The work matrix is now diagonal, so ensure it's positive so its diagonal entries are the singular values ***/ for(Index i = 0; i < m_diagSize; ++i) { // For a complex matrix, some diagonal coefficients might note have been // treated by svd_precondition_2x2_block_to_be_real, and the imaginary part // of some diagonal entry might not be null. if(NumTraits::IsComplex && abs(numext::imag(m_workMatrix.coeff(i,i)))>considerAsZero) { RealScalar a = abs(m_workMatrix.coeff(i,i)); m_singularValues.coeffRef(i) = abs(a); if(computeU()) m_matrixU.col(i) *= m_workMatrix.coeff(i,i)/a; } else { // m_workMatrix.coeff(i,i) is already real, no difficulty: RealScalar a = numext::real(m_workMatrix.coeff(i,i)); m_singularValues.coeffRef(i) = abs(a); if(computeU() && (a JacobiSVD::PlainObject> MatrixBase::jacobiSvd(unsigned int computationOptions) const { return JacobiSVD(*this, computationOptions); } } // end namespace Eigen #endif // EIGEN_JACOBISVD_H