// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2015 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSE_COMPRESSED_BASE_H #define EIGEN_SPARSE_COMPRESSED_BASE_H namespace Eigen { template class SparseCompressedBase; namespace internal { template struct traits > : traits {}; } // end namespace internal /** \ingroup SparseCore_Module * \class SparseCompressedBase * \brief Common base class for sparse [compressed]-{row|column}-storage format. * * This class defines the common interface for all derived classes implementing the compressed sparse storage format, such as: * - SparseMatrix * - Ref * - Map * */ template class SparseCompressedBase : public SparseMatrixBase { public: typedef SparseMatrixBase Base; EIGEN_SPARSE_PUBLIC_INTERFACE(SparseCompressedBase) using Base::operator=; using Base::IsRowMajor; class InnerIterator; class ReverseInnerIterator; protected: typedef typename Base::IndexVector IndexVector; Eigen::Map innerNonZeros() { return Eigen::Map(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); } const Eigen::Map innerNonZeros() const { return Eigen::Map(innerNonZeroPtr(), isCompressed()?0:derived().outerSize()); } public: /** \returns the number of non zero coefficients */ inline Index nonZeros() const { if(Derived::IsVectorAtCompileTime && outerIndexPtr()==0) return derived().nonZeros(); else if(isCompressed()) return outerIndexPtr()[derived().outerSize()]-outerIndexPtr()[0]; else if(derived().outerSize()==0) return 0; else return innerNonZeros().sum(); } /** \returns a const pointer to the array of values. * This function is aimed at interoperability with other libraries. * \sa innerIndexPtr(), outerIndexPtr() */ inline const Scalar* valuePtr() const { return derived().valuePtr(); } /** \returns a non-const pointer to the array of values. * This function is aimed at interoperability with other libraries. * \sa innerIndexPtr(), outerIndexPtr() */ inline Scalar* valuePtr() { return derived().valuePtr(); } /** \returns a const pointer to the array of inner indices. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), outerIndexPtr() */ inline const StorageIndex* innerIndexPtr() const { return derived().innerIndexPtr(); } /** \returns a non-const pointer to the array of inner indices. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), outerIndexPtr() */ inline StorageIndex* innerIndexPtr() { return derived().innerIndexPtr(); } /** \returns a const pointer to the array of the starting positions of the inner vectors. * This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 for SparseVector * \sa valuePtr(), innerIndexPtr() */ inline const StorageIndex* outerIndexPtr() const { return derived().outerIndexPtr(); } /** \returns a non-const pointer to the array of the starting positions of the inner vectors. * This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 for SparseVector * \sa valuePtr(), innerIndexPtr() */ inline StorageIndex* outerIndexPtr() { return derived().outerIndexPtr(); } /** \returns a const pointer to the array of the number of non zeros of the inner vectors. * This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 in compressed mode */ inline const StorageIndex* innerNonZeroPtr() const { return derived().innerNonZeroPtr(); } /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. * This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 in compressed mode */ inline StorageIndex* innerNonZeroPtr() { return derived().innerNonZeroPtr(); } /** \returns whether \c *this is in compressed form. */ inline bool isCompressed() const { return innerNonZeroPtr()==0; } /** \returns a read-only view of the stored coefficients as a 1D array expression. * * \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise. * * \sa valuePtr(), isCompressed() */ const Map > coeffs() const { eigen_assert(isCompressed()); return Array::Map(valuePtr(),nonZeros()); } /** \returns a read-write view of the stored coefficients as a 1D array expression * * \warning this method is for \b compressed \b storage \b only, and it will trigger an assertion otherwise. * * Here is an example: * \include SparseMatrix_coeffs.cpp * and the output is: * \include SparseMatrix_coeffs.out * * \sa valuePtr(), isCompressed() */ Map > coeffs() { eigen_assert(isCompressed()); return Array::Map(valuePtr(),nonZeros()); } protected: /** Default constructor. Do nothing. */ SparseCompressedBase() {} private: template explicit SparseCompressedBase(const SparseCompressedBase&); }; template class SparseCompressedBase::InnerIterator { public: InnerIterator() : m_values(0), m_indices(0), m_outer(0), m_id(0), m_end(0) {} InnerIterator(const InnerIterator& other) : m_values(other.m_values), m_indices(other.m_indices), m_outer(other.m_outer), m_id(other.m_id), m_end(other.m_end) {} InnerIterator& operator=(const InnerIterator& other) { m_values = other.m_values; m_indices = other.m_indices; const_cast(m_outer).setValue(other.m_outer.value()); m_id = other.m_id; m_end = other.m_end; return *this; } InnerIterator(const SparseCompressedBase& mat, Index outer) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) { if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0) { m_id = 0; m_end = mat.nonZeros(); } else { m_id = mat.outerIndexPtr()[outer]; if(mat.isCompressed()) m_end = mat.outerIndexPtr()[outer+1]; else m_end = m_id + mat.innerNonZeroPtr()[outer]; } } explicit InnerIterator(const SparseCompressedBase& mat) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_id(0), m_end(mat.nonZeros()) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); } explicit InnerIterator(const internal::CompressedStorage& data) : m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_id(0), m_end(data.size()) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); } inline InnerIterator& operator++() { m_id++; return *this; } inline InnerIterator& operator+=(Index i) { m_id += i ; return *this; } inline InnerIterator operator+(Index i) { InnerIterator result = *this; result += i; return result; } inline const Scalar& value() const { return m_values[m_id]; } inline Scalar& valueRef() { return const_cast(m_values[m_id]); } inline StorageIndex index() const { return m_indices[m_id]; } inline Index outer() const { return m_outer.value(); } inline Index row() const { return IsRowMajor ? m_outer.value() : index(); } inline Index col() const { return IsRowMajor ? index() : m_outer.value(); } inline operator bool() const { return (m_id < m_end); } protected: const Scalar* m_values; const StorageIndex* m_indices; typedef internal::variable_if_dynamic OuterType; const OuterType m_outer; Index m_id; Index m_end; private: // If you get here, then you're not using the right InnerIterator type, e.g.: // SparseMatrix A; // SparseMatrix::InnerIterator it(A,0); template InnerIterator(const SparseMatrixBase&, Index outer); }; template class SparseCompressedBase::ReverseInnerIterator { public: ReverseInnerIterator(const SparseCompressedBase& mat, Index outer) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer) { if(Derived::IsVectorAtCompileTime && mat.outerIndexPtr()==0) { m_start = 0; m_id = mat.nonZeros(); } else { m_start = mat.outerIndexPtr()[outer]; if(mat.isCompressed()) m_id = mat.outerIndexPtr()[outer+1]; else m_id = m_start + mat.innerNonZeroPtr()[outer]; } } explicit ReverseInnerIterator(const SparseCompressedBase& mat) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(0), m_start(0), m_id(mat.nonZeros()) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); } explicit ReverseInnerIterator(const internal::CompressedStorage& data) : m_values(data.valuePtr()), m_indices(data.indexPtr()), m_outer(0), m_start(0), m_id(data.size()) { EIGEN_STATIC_ASSERT_VECTOR_ONLY(Derived); } inline ReverseInnerIterator& operator--() { --m_id; return *this; } inline ReverseInnerIterator& operator-=(Index i) { m_id -= i; return *this; } inline ReverseInnerIterator operator-(Index i) { ReverseInnerIterator result = *this; result -= i; return result; } inline const Scalar& value() const { return m_values[m_id-1]; } inline Scalar& valueRef() { return const_cast(m_values[m_id-1]); } inline StorageIndex index() const { return m_indices[m_id-1]; } inline Index outer() const { return m_outer.value(); } inline Index row() const { return IsRowMajor ? m_outer.value() : index(); } inline Index col() const { return IsRowMajor ? index() : m_outer.value(); } inline operator bool() const { return (m_id > m_start); } protected: const Scalar* m_values; const StorageIndex* m_indices; typedef internal::variable_if_dynamic OuterType; const OuterType m_outer; Index m_start; Index m_id; }; namespace internal { template struct evaluator > : evaluator_base { typedef typename Derived::Scalar Scalar; typedef typename Derived::InnerIterator InnerIterator; enum { CoeffReadCost = NumTraits::ReadCost, Flags = Derived::Flags }; evaluator() : m_matrix(0), m_zero(0) { EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); } explicit evaluator(const Derived &mat) : m_matrix(&mat), m_zero(0) { EIGEN_INTERNAL_CHECK_COST_VALUE(CoeffReadCost); } inline Index nonZerosEstimate() const { return m_matrix->nonZeros(); } operator Derived&() { return m_matrix->const_cast_derived(); } operator const Derived&() const { return *m_matrix; } typedef typename DenseCoeffsBase::CoeffReturnType CoeffReturnType; const Scalar& coeff(Index row, Index col) const { Index p = find(row,col); if(p==Dynamic) return m_zero; else return m_matrix->const_cast_derived().valuePtr()[p]; } Scalar& coeffRef(Index row, Index col) { Index p = find(row,col); eigen_assert(p!=Dynamic && "written coefficient does not exist"); return m_matrix->const_cast_derived().valuePtr()[p]; } protected: Index find(Index row, Index col) const { eigen_internal_assert(row>=0 && rowrows() && col>=0 && colcols()); const Index outer = Derived::IsRowMajor ? row : col; const Index inner = Derived::IsRowMajor ? col : row; Index start = m_matrix->outerIndexPtr()[outer]; Index end = m_matrix->isCompressed() ? m_matrix->outerIndexPtr()[outer+1] : m_matrix->outerIndexPtr()[outer] + m_matrix->innerNonZeroPtr()[outer]; eigen_assert(end>=start && "you are using a non finalized sparse matrix or written coefficient does not exist"); const Index p = std::lower_bound(m_matrix->innerIndexPtr()+start, m_matrix->innerIndexPtr()+end,inner) - m_matrix->innerIndexPtr(); return ((pinnerIndexPtr()[p]==inner)) ? p : Dynamic; } const Derived *m_matrix; const Scalar m_zero; }; } } // end namespace Eigen #endif // EIGEN_SPARSE_COMPRESSED_BASE_H