// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2014 Benoit Steiner // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H #define EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H namespace Eigen { /** \class TensorShuffling * \ingroup CXX11_Tensor_Module * * \brief Tensor shuffling class. * * */ namespace internal { template struct traits > : public traits { typedef typename XprType::Scalar Scalar; typedef traits XprTraits; typedef typename XprTraits::StorageKind StorageKind; typedef typename XprTraits::Index Index; typedef typename XprType::Nested Nested; typedef typename remove_reference::type _Nested; static const int NumDimensions = XprTraits::NumDimensions; static const int Layout = XprTraits::Layout; }; template struct eval, Eigen::Dense> { typedef const TensorShufflingOp& type; }; template struct nested, 1, typename eval >::type> { typedef TensorShufflingOp type; }; } // end namespace internal template class TensorShufflingOp : public TensorBase > { public: typedef typename Eigen::internal::traits::Scalar Scalar; typedef typename Eigen::NumTraits::Real RealScalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename Eigen::internal::nested::type Nested; typedef typename Eigen::internal::traits::StorageKind StorageKind; typedef typename Eigen::internal::traits::Index Index; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp(const XprType& expr, const Shuffle& shuffle) : m_xpr(expr), m_shuffle(shuffle) {} EIGEN_DEVICE_FUNC const Shuffle& shufflePermutation() const { return m_shuffle; } EIGEN_DEVICE_FUNC const typename internal::remove_all::type& expression() const { return m_xpr; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const TensorShufflingOp& other) { typedef TensorAssignOp Assign; Assign assign(*this, other); internal::TensorExecutor::run(assign, DefaultDevice()); return *this; } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorShufflingOp& operator = (const OtherDerived& other) { typedef TensorAssignOp Assign; Assign assign(*this, other); internal::TensorExecutor::run(assign, DefaultDevice()); return *this; } protected: typename XprType::Nested m_xpr; const Shuffle m_shuffle; }; // Eval as rvalue template struct TensorEvaluator, Device> { typedef TensorShufflingOp XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size::Dimensions>::value; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = internal::unpacket_traits::size; enum { IsAligned = false, PacketAccess = (internal::packet_traits::size > 1), Layout = TensorEvaluator::Layout, CoordAccess = false, // to be implemented RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : m_impl(op.expression(), device) { const typename TensorEvaluator::Dimensions& input_dims = m_impl.dimensions(); const Shuffle& shuffle = op.shufflePermutation(); for (int i = 0; i < NumDims; ++i) { m_dimensions[i] = input_dims[shuffle[i]]; } array inputStrides; if (static_cast(Layout) == static_cast(ColMajor)) { inputStrides[0] = 1; m_outputStrides[0] = 1; for (int i = 1; i < NumDims; ++i) { inputStrides[i] = inputStrides[i - 1] * input_dims[i - 1]; m_outputStrides[i] = m_outputStrides[i - 1] * m_dimensions[i - 1]; } } else { inputStrides[NumDims - 1] = 1; m_outputStrides[NumDims - 1] = 1; for (int i = NumDims - 2; i >= 0; --i) { inputStrides[i] = inputStrides[i + 1] * input_dims[i + 1]; m_outputStrides[i] = m_outputStrides[i + 1] * m_dimensions[i + 1]; } } for (int i = 0; i < NumDims; ++i) { m_inputStrides[i] = inputStrides[shuffle[i]]; } } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dimensions; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(Scalar* /*data*/) { m_impl.evalSubExprsIfNeeded(NULL); return true; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void cleanup() { m_impl.cleanup(); } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const { return m_impl.coeff(srcCoeff(index)); } template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) eigen_assert(index+PacketSize-1 < dimensions().TotalSize()); EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; for (int i = 0; i < PacketSize; ++i) { values[i] = coeff(index+i); } PacketReturnType rslt = internal::pload(values); return rslt; } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const { const double compute_cost = NumDims * (2 * TensorOpCost::AddCost() + 2 * TensorOpCost::MulCost() + TensorOpCost::DivCost()); return m_impl.costPerCoeff(vectorized) + TensorOpCost(0, 0, compute_cost, false /* vectorized */, PacketSize); } EIGEN_DEVICE_FUNC Scalar* data() const { return NULL; } protected: EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Index srcCoeff(Index index) const { Index inputIndex = 0; if (static_cast(Layout) == static_cast(ColMajor)) { for (int i = NumDims - 1; i > 0; --i) { const Index idx = index / m_outputStrides[i]; inputIndex += idx * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } return inputIndex + index * m_inputStrides[0]; } else { for (int i = 0; i < NumDims - 1; ++i) { const Index idx = index / m_outputStrides[i]; inputIndex += idx * m_inputStrides[i]; index -= idx * m_outputStrides[i]; } return inputIndex + index * m_inputStrides[NumDims - 1]; } } Dimensions m_dimensions; array m_outputStrides; array m_inputStrides; TensorEvaluator m_impl; }; // Eval as lvalue template struct TensorEvaluator, Device> : public TensorEvaluator, Device> { typedef TensorEvaluator, Device> Base; typedef TensorShufflingOp XprType; typedef typename XprType::Index Index; static const int NumDims = internal::array_size::Dimensions>::value; typedef DSizes Dimensions; typedef typename XprType::Scalar Scalar; typedef typename XprType::CoeffReturnType CoeffReturnType; typedef typename PacketType::type PacketReturnType; static const int PacketSize = internal::unpacket_traits::size; enum { IsAligned = false, PacketAccess = (internal::packet_traits::size > 1), RawAccess = false }; EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorEvaluator(const XprType& op, const Device& device) : Base(op, device) { } EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) { return this->m_impl.coeffRef(this->srcCoeff(index)); } template EIGEN_STRONG_INLINE void writePacket(Index index, const PacketReturnType& x) { EIGEN_STATIC_ASSERT((PacketSize > 1), YOU_MADE_A_PROGRAMMING_MISTAKE) EIGEN_ALIGN_MAX typename internal::remove_const::type values[PacketSize]; internal::pstore(values, x); for (int i = 0; i < PacketSize; ++i) { this->coeffRef(index+i) = values[i]; } } }; } // end namespace Eigen #endif // EIGEN_CXX11_TENSOR_TENSOR_SHUFFLING_H