// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009, 2010, 2013 Jitse Niesen // Copyright (C) 2011, 2013 Chen-Pang He // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIX_EXPONENTIAL #define EIGEN_MATRIX_EXPONENTIAL #include "StemFunction.h" namespace Eigen { namespace internal { /** \brief Scaling operator. * * This struct is used by CwiseUnaryOp to scale a matrix by \f$ 2^{-s} \f$. */ template struct MatrixExponentialScalingOp { /** \brief Constructor. * * \param[in] squarings The integer \f$ s \f$ in this document. */ MatrixExponentialScalingOp(int squarings) : m_squarings(squarings) { } /** \brief Scale a matrix coefficient. * * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. */ inline const RealScalar operator() (const RealScalar& x) const { using std::ldexp; return ldexp(x, -m_squarings); } typedef std::complex ComplexScalar; /** \brief Scale a matrix coefficient. * * \param[in,out] x The scalar to be scaled, becoming \f$ 2^{-s} x \f$. */ inline const ComplexScalar operator() (const ComplexScalar& x) const { using std::ldexp; return ComplexScalar(ldexp(x.real(), -m_squarings), ldexp(x.imag(), -m_squarings)); } private: int m_squarings; }; /** \brief Compute the (3,3)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. */ template void matrix_exp_pade3(const MatA& A, MatU& U, MatV& V) { typedef typename MatA::PlainObject MatrixType; typedef typename NumTraits::Scalar>::Real RealScalar; const RealScalar b[] = {120.L, 60.L, 12.L, 1.L}; const MatrixType A2 = A * A; const MatrixType tmp = b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); U.noalias() = A * tmp; V = b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); } /** \brief Compute the (5,5)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. */ template void matrix_exp_pade5(const MatA& A, MatU& U, MatV& V) { typedef typename MatA::PlainObject MatrixType; typedef typename NumTraits::Scalar>::Real RealScalar; const RealScalar b[] = {30240.L, 15120.L, 3360.L, 420.L, 30.L, 1.L}; const MatrixType A2 = A * A; const MatrixType A4 = A2 * A2; const MatrixType tmp = b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); U.noalias() = A * tmp; V = b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); } /** \brief Compute the (7,7)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. */ template void matrix_exp_pade7(const MatA& A, MatU& U, MatV& V) { typedef typename MatA::PlainObject MatrixType; typedef typename NumTraits::Scalar>::Real RealScalar; const RealScalar b[] = {17297280.L, 8648640.L, 1995840.L, 277200.L, 25200.L, 1512.L, 56.L, 1.L}; const MatrixType A2 = A * A; const MatrixType A4 = A2 * A2; const MatrixType A6 = A4 * A2; const MatrixType tmp = b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); U.noalias() = A * tmp; V = b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); } /** \brief Compute the (9,9)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. */ template void matrix_exp_pade9(const MatA& A, MatU& U, MatV& V) { typedef typename MatA::PlainObject MatrixType; typedef typename NumTraits::Scalar>::Real RealScalar; const RealScalar b[] = {17643225600.L, 8821612800.L, 2075673600.L, 302702400.L, 30270240.L, 2162160.L, 110880.L, 3960.L, 90.L, 1.L}; const MatrixType A2 = A * A; const MatrixType A4 = A2 * A2; const MatrixType A6 = A4 * A2; const MatrixType A8 = A6 * A2; const MatrixType tmp = b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); U.noalias() = A * tmp; V = b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); } /** \brief Compute the (13,13)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. */ template void matrix_exp_pade13(const MatA& A, MatU& U, MatV& V) { typedef typename MatA::PlainObject MatrixType; typedef typename NumTraits::Scalar>::Real RealScalar; const RealScalar b[] = {64764752532480000.L, 32382376266240000.L, 7771770303897600.L, 1187353796428800.L, 129060195264000.L, 10559470521600.L, 670442572800.L, 33522128640.L, 1323241920.L, 40840800.L, 960960.L, 16380.L, 182.L, 1.L}; const MatrixType A2 = A * A; const MatrixType A4 = A2 * A2; const MatrixType A6 = A4 * A2; V = b[13] * A6 + b[11] * A4 + b[9] * A2; // used for temporary storage MatrixType tmp = A6 * V; tmp += b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); U.noalias() = A * tmp; tmp = b[12] * A6 + b[10] * A4 + b[8] * A2; V.noalias() = A6 * tmp; V += b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); } /** \brief Compute the (17,17)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. * * This function activates only if your long double is double-double or quadruple. */ #if LDBL_MANT_DIG > 64 template void matrix_exp_pade17(const MatA& A, MatU& U, MatV& V) { typedef typename MatA::PlainObject MatrixType; typedef typename NumTraits::Scalar>::Real RealScalar; const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, 100610229646136770560000.L, 15720348382208870400000.L, 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, 46512.L, 306.L, 1.L}; const MatrixType A2 = A * A; const MatrixType A4 = A2 * A2; const MatrixType A6 = A4 * A2; const MatrixType A8 = A4 * A4; V = b[17] * A8 + b[15] * A6 + b[13] * A4 + b[11] * A2; // used for temporary storage MatrixType tmp = A8 * V; tmp += b[9] * A8 + b[7] * A6 + b[5] * A4 + b[3] * A2 + b[1] * MatrixType::Identity(A.rows(), A.cols()); U.noalias() = A * tmp; tmp = b[16] * A8 + b[14] * A6 + b[12] * A4 + b[10] * A2; V.noalias() = tmp * A8; V += b[8] * A8 + b[6] * A6 + b[4] * A4 + b[2] * A2 + b[0] * MatrixType::Identity(A.rows(), A.cols()); } #endif template ::Scalar>::Real> struct matrix_exp_computeUV { /** \brief Compute Padé approximant to the exponential. * * Computes \c U, \c V and \c squarings such that \f$ (V+U)(V-U)^{-1} \f$ is a Padé * approximant of \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$, where \f$ M \f$ * denotes the matrix \c arg. The degree of the Padé approximant and the value of squarings * are chosen such that the approximation error is no more than the round-off error. */ static void run(const MatrixType& arg, MatrixType& U, MatrixType& V, int& squarings); }; template struct matrix_exp_computeUV { template static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) { using std::frexp; using std::pow; const float l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); squarings = 0; if (l1norm < 4.258730016922831e-001f) { matrix_exp_pade3(arg, U, V); } else if (l1norm < 1.880152677804762e+000f) { matrix_exp_pade5(arg, U, V); } else { const float maxnorm = 3.925724783138660f; frexp(l1norm / maxnorm, &squarings); if (squarings < 0) squarings = 0; MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp(squarings)); matrix_exp_pade7(A, U, V); } } }; template struct matrix_exp_computeUV { template static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) { using std::frexp; using std::pow; const double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); squarings = 0; if (l1norm < 1.495585217958292e-002) { matrix_exp_pade3(arg, U, V); } else if (l1norm < 2.539398330063230e-001) { matrix_exp_pade5(arg, U, V); } else if (l1norm < 9.504178996162932e-001) { matrix_exp_pade7(arg, U, V); } else if (l1norm < 2.097847961257068e+000) { matrix_exp_pade9(arg, U, V); } else { const double maxnorm = 5.371920351148152; frexp(l1norm / maxnorm, &squarings); if (squarings < 0) squarings = 0; MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp(squarings)); matrix_exp_pade13(A, U, V); } } }; template struct matrix_exp_computeUV { template static void run(const ArgType& arg, MatrixType& U, MatrixType& V, int& squarings) { #if LDBL_MANT_DIG == 53 // double precision matrix_exp_computeUV::run(arg, U, V, squarings); #else using std::frexp; using std::pow; const long double l1norm = arg.cwiseAbs().colwise().sum().maxCoeff(); squarings = 0; #if LDBL_MANT_DIG <= 64 // extended precision if (l1norm < 4.1968497232266989671e-003L) { matrix_exp_pade3(arg, U, V); } else if (l1norm < 1.1848116734693823091e-001L) { matrix_exp_pade5(arg, U, V); } else if (l1norm < 5.5170388480686700274e-001L) { matrix_exp_pade7(arg, U, V); } else if (l1norm < 1.3759868875587845383e+000L) { matrix_exp_pade9(arg, U, V); } else { const long double maxnorm = 4.0246098906697353063L; frexp(l1norm / maxnorm, &squarings); if (squarings < 0) squarings = 0; MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp(squarings)); matrix_exp_pade13(A, U, V); } #elif LDBL_MANT_DIG <= 106 // double-double if (l1norm < 3.2787892205607026992947488108213e-005L) { matrix_exp_pade3(arg, U, V); } else if (l1norm < 6.4467025060072760084130906076332e-003L) { matrix_exp_pade5(arg, U, V); } else if (l1norm < 6.8988028496595374751374122881143e-002L) { matrix_exp_pade7(arg, U, V); } else if (l1norm < 2.7339737518502231741495857201670e-001L) { matrix_exp_pade9(arg, U, V); } else if (l1norm < 1.3203382096514474905666448850278e+000L) { matrix_exp_pade13(arg, U, V); } else { const long double maxnorm = 3.2579440895405400856599663723517L; frexp(l1norm / maxnorm, &squarings); if (squarings < 0) squarings = 0; MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp(squarings)); matrix_exp_pade17(A, U, V); } #elif LDBL_MANT_DIG <= 112 // quadruple precison if (l1norm < 1.639394610288918690547467954466970e-005L) { matrix_exp_pade3(arg, U, V); } else if (l1norm < 4.253237712165275566025884344433009e-003L) { matrix_exp_pade5(arg, U, V); } else if (l1norm < 5.125804063165764409885122032933142e-002L) { matrix_exp_pade7(arg, U, V); } else if (l1norm < 2.170000765161155195453205651889853e-001L) { matrix_exp_pade9(arg, U, V); } else if (l1norm < 1.125358383453143065081397882891878e+000L) { matrix_exp_pade13(arg, U, V); } else { frexp(l1norm / maxnorm, &squarings); if (squarings < 0) squarings = 0; MatrixType A = arg.unaryExpr(MatrixExponentialScalingOp(squarings)); matrix_exp_pade17(A, U, V); } #else // this case should be handled in compute() eigen_assert(false && "Bug in MatrixExponential"); #endif #endif // LDBL_MANT_DIG } }; /* Computes the matrix exponential * * \param arg argument of matrix exponential (should be plain object) * \param result variable in which result will be stored */ template void matrix_exp_compute(const ArgType& arg, ResultType &result) { typedef typename ArgType::PlainObject MatrixType; #if LDBL_MANT_DIG > 112 // rarely happens typedef typename traits::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef typename std::complex ComplexScalar; if (sizeof(RealScalar) > 14) { result = arg.matrixFunction(internal::stem_function_exp); return; } #endif MatrixType U, V; int squarings; matrix_exp_computeUV::run(arg, U, V, squarings); // Pade approximant is (U+V) / (-U+V) MatrixType numer = U + V; MatrixType denom = -U + V; result = denom.partialPivLu().solve(numer); for (int i=0; i struct MatrixExponentialReturnValue : public ReturnByValue > { typedef typename Derived::Index Index; public: /** \brief Constructor. * * \param src %Matrix (expression) forming the argument of the matrix exponential. */ MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } /** \brief Compute the matrix exponential. * * \param result the matrix exponential of \p src in the constructor. */ template inline void evalTo(ResultType& result) const { const typename internal::nested_eval::type tmp(m_src); internal::matrix_exp_compute(tmp, result); } Index rows() const { return m_src.rows(); } Index cols() const { return m_src.cols(); } protected: const typename internal::ref_selector::type m_src; }; namespace internal { template struct traits > { typedef typename Derived::PlainObject ReturnType; }; } template const MatrixExponentialReturnValue MatrixBase::exp() const { eigen_assert(rows() == cols()); return MatrixExponentialReturnValue(derived()); } } // end namespace Eigen #endif // EIGEN_MATRIX_EXPONENTIAL