module Type.Constrain.Expression where
import Control.Applicative ((<$>))
import qualified Control.Monad as Monad
import Control.Monad.Error
import qualified Data.List as List
import qualified Data.Map as Map
import Prelude hiding (and)
import qualified Text.PrettyPrint as PP
import qualified AST.Literal as Lit
import AST.Annotation as Ann
import AST.Expression.General
import qualified AST.Expression.Canonical as Canonical
import qualified AST.Pattern as P
import qualified AST.Type as ST
import qualified AST.Variable as V
import Type.Type hiding (Descriptor(..))
import qualified Type.Fragment as Fragment
import qualified Type.Environment as Env
import qualified Type.Constrain.Literal as Literal
import qualified Type.Constrain.Pattern as Pattern
constrain
:: Env.Environment
-> Canonical.Expr
-> Type
-> ErrorT [PP.Doc] IO TypeConstraint
constrain env (A region expression) tipe =
let list t = Env.get env Env.types "List" <| t
and = A region . CAnd
true = A region CTrue
t1 === t2 = A region (CEqual t1 t2)
x <? t = A region (CInstance x t)
clet schemes c = A region (CLet schemes c)
in
case expression of
Literal lit ->
liftIO $ Literal.constrain env region lit tipe
GLShader _uid _src gltipe ->
exists $ \attr ->
exists $ \unif ->
let
shaderTipe a u v = Env.get env Env.types "WebGL.Shader" <| a <| u <| v
glTipe = Env.get env Env.types . Lit.glTipeName
makeRec accessor baseRec =
let decls = accessor gltipe
in if Map.size decls == 0
then baseRec
else record (Map.map (\t -> [glTipe t]) decls) baseRec
attribute = makeRec Lit.attribute attr
uniform = makeRec Lit.uniform unif
varying = makeRec Lit.varying (termN EmptyRecord1)
in
return . A region $ CEqual tipe (shaderTipe attribute uniform varying)
Var var
| name == saveEnvName -> return (A region CSaveEnv)
| otherwise -> return (name <? tipe)
where
name = V.toString var
Range lo hi ->
existsNumber $ \n ->
do clo <- constrain env lo n
chi <- constrain env hi n
return $ and [clo, chi, list n === tipe]
ExplicitList exprs ->
exists $ \x ->
do constraints <- mapM (\e -> constrain env e x) exprs
return . and $ list x === tipe : constraints
Binop op e1 e2 ->
exists $ \t1 ->
exists $ \t2 ->
do c1 <- constrain env e1 t1
c2 <- constrain env e2 t2
return $ and [ c1, c2, V.toString op <? (t1 ==> t2 ==> tipe) ]
Lambda p e ->
exists $ \t1 ->
exists $ \t2 ->
do fragment <- try region $ Pattern.constrain env p t1
c2 <- constrain env e t2
let c = ex (Fragment.vars fragment)
(clet [monoscheme (Fragment.typeEnv fragment)]
(Fragment.typeConstraint fragment /\ c2)
)
return $ c /\ tipe === (t1 ==> t2)
App e1 e2 ->
exists $ \t ->
do c1 <- constrain env e1 (t ==> tipe)
c2 <- constrain env e2 t
return $ c1 /\ c2
MultiIf branches ->
and <$> mapM constrain' branches
where
bool = Env.get env Env.types "Bool"
constrain' (cond, expr) =
do cb <- constrain env cond bool
ce <- constrain env expr tipe
return (cb /\ ce)
Case expr branches ->
exists $ \t ->
do ce <- constrain env expr t
and . (:) ce <$> mapM (branch t) branches
where
branch t (pattern, branchExpr) =
do fragment <- try region $ Pattern.constrain env pattern t
clet [Fragment.toScheme fragment] <$> constrain env branchExpr tipe
Data name exprs ->
do vars <- forM exprs $ \_ -> liftIO (variable Flexible)
let pairs = zip exprs (map varN vars)
(ctipe, cs) <- Monad.foldM step (tipe,true) (reverse pairs)
return $ ex vars (cs /\ name <? ctipe)
where
step (t,c) (e,x) =
do c' <- constrain env e x
return (x ==> t, c /\ c')
Access expr label ->
exists $ \t ->
constrain env expr (record (Map.singleton label [tipe]) t)
Remove expr label ->
exists $ \t ->
constrain env expr (record (Map.singleton label [t]) tipe)
Insert expr label value ->
exists $ \tVal ->
exists $ \tRec ->
do cVal <- constrain env value tVal
cRec <- constrain env expr tRec
let c = tipe === record (Map.singleton label [tVal]) tRec
return (and [cVal, cRec, c])
Modify expr fields ->
exists $ \t ->
do oldVars <- forM fields $ \_ -> liftIO (variable Flexible)
let oldFields = ST.fieldMap (zip (map fst fields) (map varN oldVars))
cOld <- ex oldVars <$> constrain env expr (record oldFields t)
newVars <- forM fields $ \_ -> liftIO (variable Flexible)
let newFields = ST.fieldMap (zip (map fst fields) (map varN newVars))
let cNew = tipe === record newFields t
cs <- zipWithM (constrain env) (map snd fields) (map varN newVars)
return $ cOld /\ ex newVars (and (cNew : cs))
Record fields ->
do vars <- forM fields $ \_ -> liftIO (variable Flexible)
cs <- zipWithM (constrain env) (map snd fields) (map varN vars)
let fields' = ST.fieldMap (zip (map fst fields) (map varN vars))
let recordType = record fields' (termN EmptyRecord1)
return . ex vars . and $ tipe === recordType : cs
Let defs body ->
do c <- constrain env body tipe
(Info schemes rqs fqs headers c2 c1) <-
Monad.foldM
(constrainDef env)
(Info [] [] [] Map.empty true true)
(concatMap expandPattern defs)
let letScheme = [ Scheme rqs fqs (clet [monoscheme headers] c2) headers ]
return $ clet schemes (clet letScheme (c1 /\ c))
Port impl ->
case impl of
In _ _ ->
return true
Out _ expr _ ->
constrain env expr tipe
Task _ expr _ ->
constrain env expr tipe
expandPattern :: Canonical.Def -> [Canonical.Def]
expandPattern def@(Canonical.Definition pattern lexpr@(A r _) maybeType) =
case pattern of
P.Var _ ->
[def]
_ ->
Canonical.Definition (P.Var x) lexpr maybeType : map toDef vars
where
vars = P.boundVarList pattern
x = "$" ++ concat vars
mkVar = A r . localVar
toDef y = Canonical.Definition (P.Var y) (A r $ Case (mkVar x) [(pattern, mkVar y)]) Nothing
try :: Region -> ErrorT (Region -> PP.Doc) IO a -> ErrorT [PP.Doc] IO a
try region computation =
do result <- liftIO $ runErrorT computation
case result of
Left err -> throwError [err region]
Right value -> return value
data Info = Info
{ iSchemes :: [TypeScheme]
, iRigid :: [Variable]
, iFlex :: [Variable]
, iHeaders :: Map.Map String Type
, iC2 :: TypeConstraint
, iC1 :: TypeConstraint
}
constrainDef :: Env.Environment -> Info -> Canonical.Def -> ErrorT [PP.Doc] IO Info
constrainDef env info (Canonical.Definition pattern expr maybeTipe) =
let qs = []
in
case (pattern, maybeTipe) of
(P.Var name, Just tipe) ->
constrainAnnotatedDef env info qs name expr tipe
(P.Var name, Nothing) ->
constrainUnannotatedDef env info qs name expr
_ -> error ("problem in constrainDef with " ++ show pattern)
constrainAnnotatedDef
:: Env.Environment
-> Info
-> [String]
-> String
-> Canonical.Expr
-> ST.CanonicalType
-> ErrorT [PP.Doc] IO Info
constrainAnnotatedDef env info qs name expr tipe =
do
rigidVars <- forM qs (\_ -> liftIO $ variable Rigid)
flexiVars <- forM qs (\_ -> liftIO $ variable Flexible)
let inserts = zipWith (\arg typ -> Map.insert arg (varN typ)) qs flexiVars
let env' = env { Env.value = List.foldl' (\x f -> f x) (Env.value env) inserts }
(vars, typ) <- Env.instantiateType env tipe Map.empty
let scheme =
Scheme
{ rigidQuantifiers = []
, flexibleQuantifiers = flexiVars ++ vars
, constraint = Ann.noneNoDocs CTrue
, header = Map.singleton name typ
}
c <- constrain env' expr typ
return $ info
{ iSchemes = scheme : iSchemes info
, iC1 = fl rigidVars c /\ iC1 info
}
constrainUnannotatedDef
:: Env.Environment
-> Info
-> [String]
-> String
-> Canonical.Expr
-> ErrorT [PP.Doc] IO Info
constrainUnannotatedDef env info qs name expr =
do
rigidVars <- forM qs (\_ -> liftIO $ variable Rigid)
v <- liftIO $ variable Flexible
let tipe = varN v
let inserts = zipWith (\arg typ -> Map.insert arg (varN typ)) qs rigidVars
let env' = env { Env.value = List.foldl' (\x f -> f x) (Env.value env) inserts }
c <- constrain env' expr tipe
return $ info
{ iRigid = rigidVars ++ iRigid info
, iFlex = v : iFlex info
, iHeaders = Map.insert name tipe (iHeaders info)
, iC2 = c /\ iC2 info
}