-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Leibnizian equality -- -- Leibnizian equality. @package eq @version 4.2.1 -- | Leibnizian equality. Injectivity in the presence of type families is -- provided by a generalization of a trick by Oleg Kiselyov posted here: -- -- -- http://www.haskell.org/pipermail/haskell-cafe/2010-May/077177.html module Data.Eq.Type -- | Leibnizian equality states that two things are equal if you can -- substitute one for the other in all contexts newtype a := b Refl :: (forall c. c a -> c b) -> (:=) a b [subst] :: (:=) a b -> forall c. c a -> c b infixl 4 := -- | Equality is reflexive refl :: a := a -- | Equality is transitive trans :: (a := b) -> (b := c) -> a := c -- | Equality is symmetric symm :: (a := b) -> b := a -- | If two things are equal you can convert one to the other coerce :: (a := b) -> a -> b -- | You can lift equality into any type constructor lift :: (a := b) -> f a := f b -- | ... in any position lift2 :: (a := b) -> f a c := f b c lift2' :: (a := b) -> (c := d) -> f a c := f b d lift3 :: (a := b) -> f a c d := f b c d lift3' :: (a := b) -> (c := d) -> (e := f) -> g a c e := g b d f -- | Type constructors are injective, so you can lower equality through any -- type constructor ... lower :: forall a b f. (f a := f b) -> a := b -- | ... in any position ... lower2 :: forall a b c f. (f a c := f b c) -> a := b -- | ... these definitions are poly-kinded on GHC 7.6 and up. lower3 :: forall a b c d f. (f a c d := f b c d) -> a := b fromLeibniz :: (a := b) -> a :~: b toLeibniz :: (a :~: b) -> a := b reprLeibniz :: (a := b) -> Coercion a b instance Control.Category.Category (Data.Eq.Type.:=) instance Data.Semigroupoid.Semigroupoid (Data.Eq.Type.:=) instance Data.Groupoid.Groupoid (Data.Eq.Type.:=) instance forall k (a :: k). Data.Type.Equality.TestEquality ((Data.Eq.Type.:=) a) instance forall k (a :: k). Data.Type.Coercion.TestCoercion ((Data.Eq.Type.:=) a) -- | Leibnizian equality à la Data.Eq.Type, generalized to be -- heterogeneous using higher-rank kinds. -- -- This module is only exposed on GHC 8.2 and later. module Data.Eq.Type.Hetero -- | Heterogeneous Leibnizian equality. -- -- Leibnizian equality states that two things are equal if you can -- substitute one for the other in all contexts. newtype (a :: j) :== (b :: k) HRefl :: (forall (c :: forall i. i -> Type). c a -> c b) -> (:==) [hsubst] :: (:==) -> forall (c :: forall i. i -> Type). c a -> c b infixl 4 :== -- | Equality is reflexive. refl :: a :== a -- | Equality is transitive. trans :: (a :== b) -> (b :== c) -> a :== c -- | Equality is symmetric. symm :: (a :== b) -> b :== a -- | If two things are equal, you can convert one to the other. coerce :: (a :== b) -> a -> b -- | You can lift equality into any type constructor... lift :: (a :== b) -> f a :== f b -- | ... in any position. lift2 :: (a :== b) -> f a c :== f b c lift2' :: (a :== b) -> (c :== d) -> f a c :== f b d lift3 :: (a :== b) -> f a c d :== f b c d lift3' :: (a :== b) -> (c :== d) -> (e :== f) -> g a c e :== g b d f -- | Type constructors are injective, so you can lower equality through any -- type constructor. lower :: forall j k (f :: j -> k) (a :: j) (b :: j). (f a :== f b) -> a :== b lower2 :: forall i j k (f :: i -> j -> k) (a :: i) (b :: i) (c :: j). (f a c :== f b c) -> a :== b lower3 :: forall h i j k (f :: h -> i -> j -> k) (a :: h) (b :: h) (c :: i) (d :: j). (f a c d :== f b c d) -> a :== b -- | Convert an appropriately kinded heterogeneous Leibnizian equality into -- a homogeneous Leibnizian equality '(ET.:=)'. toHomogeneous :: (a :== b) -> a := b -- | Convert a homogeneous Leibnizian equality '(ET.:=)' to an -- appropriately kinded heterogeneous Leibizian equality. fromHomogeneous :: (a := b) -> a :== b fromLeibniz :: forall a b. (a :== b) -> a :~: b toLeibniz :: (a :~: b) -> a :== b heteroFromLeibniz :: (a :== b) -> a :~~: b heteroToLeibniz :: (a :~~: b) -> a :== b reprLeibniz :: (a :== b) -> Coercion a b instance Control.Category.Category (Data.Eq.Type.Hetero.:==) instance Data.Semigroupoid.Semigroupoid (Data.Eq.Type.Hetero.:==) instance Data.Groupoid.Groupoid (Data.Eq.Type.Hetero.:==) instance forall k j (a :: j). Data.Type.Equality.TestEquality ((Data.Eq.Type.Hetero.:==) a) instance forall k j (a :: j). Data.Type.Coercion.TestCoercion ((Data.Eq.Type.Hetero.:==) a)