-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Leibnizian equality -- -- Leibnizian equality. @package eq @version 4.2 -- | Leibnizian equality. Injectivity in the presence of type families is -- provided by a generalization of a trick by Oleg Kiselyov posted here: -- -- -- http://www.haskell.org/pipermail/haskell-cafe/2010-May/077177.html module Data.Eq.Type -- | Leibnizian equality states that two things are equal if you can -- substitute one for the other in all contexts newtype a (:=) b Refl :: (forall c. c a -> c b) -> (:=) a b [subst] :: (:=) a b -> forall c. c a -> c b -- | Equality is reflexive refl :: a := a -- | Equality is transitive trans :: a := b -> b := c -> a := c -- | Equality is symmetric symm :: (a := b) -> (b := a) -- | If two things are equal you can convert one to the other coerce :: a := b -> a -> b -- | You can lift equality into any type constructor lift :: a := b -> f a := f b -- | ... in any position lift2 :: a := b -> f a c := f b c lift2' :: a := b -> c := d -> f a c := f b d lift3 :: a := b -> f a c d := f b c d lift3' :: a := b -> c := d -> e := f -> g a c e := g b d f -- | Type constructors are injective, so you can lower equality through any -- type constructor ... lower :: forall a b f. f a := f b -> a := b -- | ... in any position ... lower2 :: forall a b c f. f a c := f b c -> a := b -- | ... these definitions are poly-kinded on GHC 7.6 and up. lower3 :: forall a b c d f. f a c d := f b c d -> a := b fromLeibniz :: a := b -> a :~: b toLeibniz :: a :~: b -> a := b reprLeibniz :: a := b -> Coercion a b instance Control.Category.Category (Data.Eq.Type.:=) instance Data.Semigroupoid.Semigroupoid (Data.Eq.Type.:=) instance Data.Groupoid.Groupoid (Data.Eq.Type.:=) instance forall k (a :: k). Data.Type.Equality.TestEquality ((Data.Eq.Type.:=) a) instance forall k (a :: k). Data.Type.Coercion.TestCoercion ((Data.Eq.Type.:=) a) -- | Leibnizian equality à la Data.Eq.Type, generalized to be -- heterogenous using higher-rank kinds. -- -- This module is only exposed on GHC 8.2 and later. module Data.Eq.Type.Hetero -- | Heterogeneous Leibnizian equality. -- -- Leibnizian equality states that two things are equal if you can -- substitute one for the other in all contexts. newtype (a :: j) (:==) (b :: k) HRefl :: (forall (c :: forall (i :: Type). i -> Type). c a -> c b) -> (:==) [hsubst] :: (:==) -> forall (c :: forall (i :: Type). i -> Type). c a -> c b -- | Equality is reflexive. refl :: a :== a -- | Equality is transitive. trans :: a :== b -> b :== c -> a :== c -- | Equality is symmetric. symm :: a :== b -> b :== a -- | If two things are equal, you can convert one to the other. coerce :: a :== b -> a -> b -- | You can lift equality into any type constructor... lift :: a :== b -> f a :== f b -- | ... in any position. lift2 :: a :== b -> f a c :== f b c lift2' :: a :== b -> c :== d -> f a c :== f b d lift3 :: a :== b -> f a c d :== f b c d lift3' :: a :== b -> c :== d -> e :== f -> g a c e :== g b d f -- | Type constructors are injective, so you can lower equality through any -- type constructor. lower :: forall (j :: Type) (k :: Type) (f :: j -> k) (a :: j) (b :: j). f a :== f b -> a :== b lower2 :: forall (i :: Type) (j :: Type) (k :: Type) (f :: i -> j -> k) (a :: i) (b :: i) (c :: j). f a c :== f b c -> a :== b lower3 :: forall (h :: Type) (i :: Type) (j :: Type) (k :: Type) (f :: h -> i -> j -> k) (a :: h) (b :: h) (c :: i) (d :: j). f a c d :== f b c d -> a :== b -- | Convert an appropriately kinded heterogeneous Leibnizian equality into -- a homogeneous Leibnizian equality '(ET.:=)'. toHomogeneous :: a :== b -> a := b -- | Convert a homogeneous Leibnizian equality '(ET.:=)' to an -- appropriately kinded heterogeneous Leibizian equality. fromHomogeneous :: a := b -> a :== b fromLeibniz :: forall a b. a :== b -> a :~: b toLeibniz :: a :~: b -> a :== b heteroFromLeibniz :: a :== b -> a :~~: b heteroToLeibniz :: a :~~: b -> a :== b reprLeibniz :: a :== b -> Coercion a b instance Control.Category.Category (Data.Eq.Type.Hetero.:==) instance Data.Semigroupoid.Semigroupoid (Data.Eq.Type.Hetero.:==) instance Data.Groupoid.Groupoid (Data.Eq.Type.Hetero.:==) instance forall k j (a :: j). Data.Type.Equality.TestEquality ((Data.Eq.Type.Hetero.:==) a) instance forall k j (a :: j). Data.Type.Coercion.TestCoercion ((Data.Eq.Type.Hetero.:==) a)