Proof.Equational
data a :~: b
type (:=:)
sym
trans
class Equality eq
class Preorder eq
reflexivity'
type a :\/: b
type a :/\: b
(=<=)
(=>=)
(=~=)
data Leibniz a b
data Reason eq x y
because
by
(===)
start
byDefinition
admitted
data Proxy t
cong
cong'
class Proposition f
type family xs :~> a :: *
class FromBool c
fromRefl
fromLeibniz
reflToLeibniz
leibnizToRefl
coerce
coerce'