-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Predicates that can explain themselves. -- -- Explainable predicates are essentially functions from types to -- Bool which can additionally describe themselves and explain why -- an argument does or doesn't match. They are intended to be used during -- unit tests to provide better error messages when tests fail. For -- example, if a collection is missing an element, an explainable -- predicate can tell you which element is missing. @package explainable-predicates @version 0.1.1.0 -- | An implementation of bipartite matching using the Ford-Fulkerson -- algorithm. module Test.Predicates.Internal.FlowMatcher -- | Computes the best bipartite matching of the elements in the two lists, -- given the compatibility function. -- -- Returns matched pairs, then unmatched lhs elements, then unmatched rhs -- elements. -- --
-- >>> bipartiteMatching (==) [1 .. 5] [6, 5 .. 2] -- ([(2,2),(3,3),(4,4),(5,5)],[1],[6]) --bipartiteMatching :: forall a b. (a -> b -> Bool) -> [a] -> [b] -> ([(a, b)], [a], [b]) -- | Explainable Predicates are essentially functions from types to -- Bool which can additionally describe themselves and explain why -- an argument does or doesn't match. They are intended to be used during -- unit tests to provide better error messages when tests fail. module Test.Predicates -- | A predicate, which tests values and either accepts or rejects them. -- This is similar to a -> Bool, but also can describe -- itself and explain why an argument does or doesn't match. data Predicate a Predicate :: String -> String -> (a -> Bool) -> (a -> String) -> Predicate a [showPredicate] :: Predicate a -> String [showNegation] :: Predicate a -> String [accept] :: Predicate a -> a -> Bool [explain] :: Predicate a -> a -> String -- | An infix synonym for accept. -- --
-- >>> eq 1 ==~ 1 -- True -- -- >>> eq 2 ==~ 1 -- False --(==~) :: Predicate a -> a -> Bool -- | A Predicate that accepts anything at all. -- --
-- >>> accept anything "foo" -- True -- -- >>> accept anything undefined -- True --anything :: Predicate a -- | A Predicate that accepts only the given value. -- --
-- >>> accept (eq "foo") "foo" -- True -- -- >>> accept (eq "foo") "bar" -- False --eq :: (Show a, Eq a) => a -> Predicate a -- | A Predicate that accepts anything but the given value. -- --
-- >>> accept (neq "foo") "foo" -- False -- -- >>> accept (neq "foo") "bar" -- True --neq :: (Show a, Eq a) => a -> Predicate a -- | A Predicate that accepts anything greater than the given value. -- --
-- >>> accept (gt 5) 4 -- False -- -- >>> accept (gt 5) 5 -- False -- -- >>> accept (gt 5) 6 -- True --gt :: (Show a, Ord a) => a -> Predicate a -- | A Predicate that accepts anything greater than or equal to the -- given value. -- --
-- >>> accept (geq 5) 4 -- False -- -- >>> accept (geq 5) 5 -- True -- -- >>> accept (geq 5) 6 -- True --geq :: (Show a, Ord a) => a -> Predicate a -- | A Predicate that accepts anything less than the given value. -- --
-- >>> accept (lt 5) 4 -- True -- -- >>> accept (lt 5) 5 -- False -- -- >>> accept (lt 5) 6 -- False --lt :: (Show a, Ord a) => a -> Predicate a -- | A Predicate that accepts anything less than or equal to the -- given value. -- --
-- >>> accept (leq 5) 4 -- True -- -- >>> accept (leq 5) 5 -- True -- -- >>> accept (leq 5) 6 -- False --leq :: (Show a, Ord a) => a -> Predicate a -- | A Predicate that accepts Maybe values of Just -- x, where x matches the given child Predicate. -- --
-- >>> accept (just (eq "value")) Nothing -- False -- -- >>> accept (just (eq "value")) (Just "value") -- True -- -- >>> accept (just (eq "value")) (Just "wrong value") -- False --just :: Predicate a -> Predicate (Maybe a) -- | A Predicate that accepts Maybe values of -- Nothing. Unlike eq, this doesn't require -- Eq or Show instances. -- --
-- >>> accept nothing Nothing -- True ---- --
-- >>> accept nothing (Just "something") -- False --nothing :: Predicate (Maybe a) -- | A Predicate that accepts an Either value of -- Left x, where x matches the given child -- Predicate. -- --
-- >>> accept (left (eq "value")) (Left "value") -- True -- -- >>> accept (left (eq "value")) (Right "value") -- False -- -- >>> accept (left (eq "value")) (Left "wrong value") -- False --left :: Predicate a -> Predicate (Either a b) -- | A Predicate that accepts an Either value of -- Right x, where x matches the given child -- Predicate. -- --
-- >>> accept (right (eq "value")) (Right "value") -- True -- -- >>> accept (right (eq "value")) (Right "wrong value") -- False -- -- >>> accept (right (eq "value")) (Left "value") -- False --right :: Predicate b -> Predicate (Either a b) -- | A Predicate that accepts pairs whose elements satisfy the -- corresponding child Predicates. -- --
-- >>> accept (zipP (eq "foo") (eq "bar")) ("foo", "bar")
-- True
--
-- >>> accept (zipP (eq "foo") (eq "bar")) ("bar", "foo")
-- False
--
zipP :: Predicate a -> Predicate b -> Predicate (a, b)
-- | A Predicate that accepts 3-tuples whose elements satisfy the
-- corresponding child Predicates.
--
--
-- >>> accept (zip3P (eq "foo") (eq "bar") (eq "qux")) ("foo", "bar", "qux")
-- True
--
-- >>> accept (zip3P (eq "foo") (eq "bar") (eq "qux")) ("qux", "bar", "foo")
-- False
--
zip3P :: Predicate a -> Predicate b -> Predicate c -> Predicate (a, b, c)
-- | A Predicate that accepts 3-tuples whose elements satisfy the
-- corresponding child Predicates.
--
-- -- >>> accept (zip4P (eq 1) (eq 2) (eq 3) (eq 4)) (1, 2, 3, 4) -- True -- -- >>> accept (zip4P (eq 1) (eq 2) (eq 3) (eq 4)) (4, 3, 2, 1) -- False --zip4P :: Predicate a -> Predicate b -> Predicate c -> Predicate d -> Predicate (a, b, c, d) -- | A Predicate that accepts 3-tuples whose elements satisfy the -- corresponding child Predicates. -- --
-- >>> accept (zip5P (eq 1) (eq 2) (eq 3) (eq 4) (eq 5)) (1, 2, 3, 4, 5) -- True -- -- >>> accept (zip5P (eq 1) (eq 2) (eq 3) (eq 4) (eq 5)) (5, 4, 3, 2, 1) -- False --zip5P :: Predicate a -> Predicate b -> Predicate c -> Predicate d -> Predicate e -> Predicate (a, b, c, d, e) -- | A Predicate that accepts anything accepted by both of its -- children. -- --
-- >>> accept (lt "foo" `andP` gt "bar") "eta" -- True -- -- >>> accept (lt "foo" `andP` gt "bar") "quz" -- False -- -- >>> accept (lt "foo" `andP` gt "bar") "alpha" -- False --andP :: Predicate a -> Predicate a -> Predicate a -- | A Predicate that accepts anything accepted by either of its -- children. -- --
-- >>> accept (lt "bar" `orP` gt "foo") "eta" -- False -- -- >>> accept (lt "bar" `orP` gt "foo") "quz" -- True -- -- >>> accept (lt "bar" `orP` gt "foo") "alpha" -- True --orP :: Predicate a -> Predicate a -> Predicate a -- | A Predicate that inverts another Predicate, accepting -- whatever its child rejects, and rejecting whatever its child accepts. -- --
-- >>> accept (notP (eq "negative")) "positive" -- True -- -- >>> accept (notP (eq "negative")) "negative" -- False --notP :: Predicate a -> Predicate a -- | A Predicate that accepts Strings or string-like values -- matching a regular expression. The expression must match the entire -- argument. -- -- You should not use caseInsensitive -- matchesRegex, because regular expression syntax itself is -- still case-sensitive even when the text you are matching is not. -- Instead, use matchesCaseInsensitiveRegex. -- --
-- >>> accept (matchesRegex "x{2,5}y?") "xxxy"
-- True
--
-- >>> accept (matchesRegex "x{2,5}y?") "xyy"
-- False
--
-- >>> accept (matchesRegex "x{2,5}y?") "wxxxyz"
-- False
--
matchesRegex :: (RegexLike Regex a, Eq a, Show a) => String -> Predicate a
-- | A Predicate that accepts Strings or string-like values
-- matching a regular expression in a case-insensitive way. The
-- expression must match the entire argument.
--
-- You should use this instead of caseInsensitive
-- matchesRegex, because regular expression syntax itself is
-- still case-sensitive even when the text you are matching is not.
--
--
-- >>> accept (matchesCaseInsensitiveRegex "x{2,5}y?") "XXXY"
-- True
--
-- >>> accept (matchesCaseInsensitiveRegex "x{2,5}y?") "XYY"
-- False
--
-- >>> accept (matchesCaseInsensitiveRegex "x{2,5}y?") "WXXXYZ"
-- False
--
matchesCaseInsensitiveRegex :: (RegexLike Regex a, Eq a, Show a) => String -> Predicate a
-- | A Predicate that accepts Strings or string-like values
-- containing a match for a regular expression. The expression need not
-- match the entire argument.
--
-- You should not use caseInsensitive
-- containsRegex, because regular expression syntax itself is
-- still case-sensitive even when the text you are matching is not.
-- Instead, use containsCaseInsensitiveRegex.
--
--
-- >>> accept (containsRegex "x{2,5}y?") "xxxy"
-- True
--
-- >>> accept (containsRegex "x{2,5}y?") "xyy"
-- False
--
-- >>> accept (containsRegex "x{2,5}y?") "wxxxyz"
-- True
--
containsRegex :: (RegexLike Regex a, Eq a, Show a) => String -> Predicate a
-- | A Predicate that accepts Strings or string-like values
-- containing a match for a regular expression in a case-insensitive way.
-- The expression need match the entire argument.
--
-- You should use this instead of caseInsensitive
-- containsRegex, because regular expression syntax itself is
-- still case-sensitive even when the text you are matching is not.
--
--
-- >>> accept (containsCaseInsensitiveRegex "x{2,5}y?") "XXXY"
-- True
--
-- >>> accept (containsCaseInsensitiveRegex "x{2,5}y?") "XYY"
-- False
--
-- >>> accept (containsCaseInsensitiveRegex "x{2,5}y?") "WXXXYZ"
-- True
--
containsCaseInsensitiveRegex :: (RegexLike Regex a, Eq a, Show a) => String -> Predicate a
-- | A Predicate that accepts sequences that start with the given
-- prefix.
--
-- -- >>> accept (startsWith "fun") "fungible" -- True -- -- >>> accept (startsWith "gib") "fungible" -- False --startsWith :: (Show t, IsSequence t, Eq (Element t)) => t -> Predicate t -- | A Predicate that accepts sequences that end with the given -- suffix. -- --
-- >>> accept (endsWith "ow") "crossbow" -- True -- -- >>> accept (endsWith "ow") "trebuchet" -- False --endsWith :: (Show t, IsSequence t, Eq (Element t)) => t -> Predicate t -- | A Predicate that accepts sequences that contain the given -- (consecutive) substring. -- --
-- >>> accept (hasSubstr "i") "team" -- False -- -- >>> accept (hasSubstr "i") "partnership" -- True --hasSubstr :: (Show t, IsSequence t, Eq (Element t)) => t -> Predicate t -- | A Predicate that accepts sequences that contain the given (not -- necessarily consecutive) subsequence. -- --
-- >>> accept (hasSubsequence [1..5]) [1, 2, 3, 4, 5] -- True -- -- >>> accept (hasSubsequence [1..5]) [0, 1, 0, 2, 0, 3, 0, 4, 0, 5, 0] -- True -- -- >>> accept (hasSubsequence [1..5]) [2, 3, 5, 7, 11] -- False --hasSubsequence :: (Show t, IsSequence t, Eq (Element t)) => t -> Predicate t -- | Transforms a Predicate on Strings or string-like types -- to match without regard to case. -- --
-- >>> accept (caseInsensitive startsWith "foo") "FOOTBALL!" -- True -- -- >>> accept (caseInsensitive endsWith "ball") "soccer" -- False -- -- >>> accept (caseInsensitive eq "time") "TIME" -- True -- -- >>> accept (caseInsensitive gt "NOTHING") "everything" -- False --caseInsensitive :: (MonoFunctor t, MonoFunctor a, Element t ~ Char, Element a ~ Char) => (t -> Predicate a) -> t -> Predicate a -- | A Predicate that accepts empty data structures. -- --
-- >>> accept isEmpty ([] :: [Int]) -- True -- -- >>> accept isEmpty [1, 2, 3] -- False -- -- >>> accept isEmpty "" -- True -- -- >>> accept isEmpty "gas tank" -- False --isEmpty :: (MonoFoldable t, Show t) => Predicate t -- | A Predicate that accepts non-empty data structures. -- --
-- >>> accept nonEmpty ([] :: [Int]) -- False -- -- >>> accept nonEmpty [1, 2, 3] -- True -- -- >>> accept nonEmpty "" -- False -- -- >>> accept nonEmpty "gas tank" -- True --nonEmpty :: (MonoFoldable t, Show t) => Predicate t -- | A Predicate that accepts data structures whose number of -- elements match the child Predicate. -- --
-- >>> accept (sizeIs (lt 3)) ['a' .. 'f'] -- False -- -- >>> accept (sizeIs (lt 3)) ['a' .. 'b'] -- True --sizeIs :: (MonoFoldable t, Show t) => Predicate Int -> Predicate t -- | A Predicate that accepts data structures whose contents each -- match the corresponding Predicate in the given list, in the -- same order. -- --
-- >>> accept (elemsAre [lt 3, lt 4, lt 5]) [2, 3, 4] -- True -- -- >>> accept (elemsAre [lt 3, lt 4, lt 5]) [2, 3, 4, 5] -- False -- -- >>> accept (elemsAre [lt 3, lt 4, lt 5]) [2, 10, 4] -- False --elemsAre :: MonoFoldable t => [Predicate (Element t)] -> Predicate t -- | A Predicate that accepts data structures whose contents each -- match the corresponding Predicate in the given list, in any -- order. -- --
-- >>> accept (unorderedElemsAre [eq 1, eq 2, eq 3]) [1, 2, 3] -- True -- -- >>> accept (unorderedElemsAre [eq 1, eq 2, eq 3]) [2, 3, 1] -- True -- -- >>> accept (unorderedElemsAre [eq 1, eq 2, eq 3]) [1, 2, 3, 4] -- False -- -- >>> accept (unorderedElemsAre [eq 1, eq 2, eq 3]) [1, 3] -- False --unorderedElemsAre :: MonoFoldable t => [Predicate (Element t)] -> Predicate t -- | A Predicate that accepts data structures whose elements each -- match the child Predicate. -- --
-- >>> accept (each (gt 5)) [4, 5, 6] -- False -- -- >>> accept (each (gt 5)) [6, 7, 8] -- True -- -- >>> accept (each (gt 5)) [] -- True --each :: MonoFoldable t => Predicate (Element t) -> Predicate t -- | A Predicate that accepts data structures which contain at least -- one element matching the child Predicate. -- --
-- >>> accept (contains (gt 5)) [3, 4, 5] -- False -- -- >>> accept (contains (gt 5)) [4, 5, 6] -- True -- -- >>> accept (contains (gt 5)) [] -- False --contains :: MonoFoldable t => Predicate (Element t) -> Predicate t -- | A Predicate that accepts data structures whose elements all -- satisfy the given child Predicates. -- --
-- >>> accept (containsAll [eq "foo", eq "bar"]) ["bar", "foo"] -- True -- -- >>> accept (containsAll [eq "foo", eq "bar"]) ["foo"] -- False -- -- >>> accept (containsAll [eq "foo", eq "bar"]) ["foo", "bar", "qux"] -- True ---- -- Each child Predicate must be satisfied by a different element, -- so repeating a Predicate requires that two different matching -- elements exist. If you want a Predicate to match multiple -- elements, instead, you can accomplish this with contains p1 -- `andP` contains p2 `andP` .... -- --
-- >>> accept (containsAll [startsWith "f", endsWith "o"]) ["foo"] -- False -- -- >>> accept (contains (startsWith "f") `andP` contains (endsWith "o")) ["foo"] -- True --containsAll :: MonoFoldable t => [Predicate (Element t)] -> Predicate t -- | A Predicate that accepts data structures whose elements all -- satisfy one of the child Predicates. -- --
-- >>> accept (containsOnly [eq "foo", eq "bar"]) ["foo"] -- True -- -- >>> accept (containsOnly [eq "foo", eq "bar"]) ["foo", "bar"] -- True -- -- >>> accept (containsOnly [eq "foo", eq "bar"]) ["foo", "qux"] -- False ---- -- Each element must satisfy a different child Predicate. If you -- want multiple elements to match the same Predicate, instead, -- you can accomplish this with each (p1 `orP` p2 -- `orP` ...). -- --
-- >>> accept (containsOnly [eq "foo", eq "bar"]) ["foo", "foo"] -- False -- -- >>> accept (each (eq "foo" `orP` eq "bar")) ["foo", "foo"] -- True --containsOnly :: MonoFoldable t => [Predicate (Element t)] -> Predicate t -- | Transforms a Predicate on a list of keys into a -- Predicate on map-like data structures. -- -- This is equivalent to with (map fst . -- toList), but more readable. -- --
-- >>> accept (keys (each (eq "foo"))) [("foo", 5)]
-- True
--
--
--
-- >>> accept (keys (each (eq "foo"))) [("foo", 5), ("bar", 6)]
-- False
--
keys :: (IsList t, Item t ~ (k, v)) => Predicate [k] -> Predicate t
-- | Transforms a Predicate on a list of values into a
-- Predicate on map-like data structures.
--
-- This is equivalent to with (map snd .
-- toList), but more readable.
--
--
-- >>> accept (values (each (eq 5))) [("foo", 5), ("bar", 5)]
-- True
--
--
--
-- >>> accept (values (each (eq 5))) [("foo", 5), ("bar", 6)]
-- False
--
values :: (IsList t, Item t ~ (k, v)) => Predicate [v] -> Predicate t
-- | A Predicate that accepts values of RealFloat types that
-- are close to the given number. The expected precision is scaled based
-- on the target value, so that reasonable rounding error is accepted but
-- grossly inaccurate results are not.
--
-- The following naive use of eq fails due to rounding:
--
-- -- >>> accept (eq 1.0) (sum (replicate 100 0.01)) -- False ---- -- The solution is to use approxEq, which accounts for rounding -- error. However, approxEq doesn't accept results that are far -- enough off that they likely arise from incorrect calculations instead -- of rounding error. -- --
-- >>> accept (approxEq 1.0) (sum (replicate 100 0.01)) -- True -- -- >>> accept (approxEq 1.0) (sum (replicate 100 0.009999)) -- False --approxEq :: (RealFloat a, Show a) => a -> Predicate a -- | A Predicate that accepts positive numbers of any Ordered -- Num type. -- --
-- >>> accept positive 1 -- True ---- --
-- >>> accept positive 0 -- False ---- --
-- >>> accept positive (-1) -- False --positive :: (Ord a, Num a) => Predicate a -- | A Predicate that accepts negative numbers of any Ordered -- Num type. -- --
-- >>> accept negative 1 -- False ---- --
-- >>> accept negative 0 -- False ---- --
-- >>> accept negative (-1) -- True --negative :: (Ord a, Num a) => Predicate a -- | A Predicate that accepts non-positive numbers of any -- Ordered Num type. -- --
-- >>> accept nonPositive 1 -- False ---- --
-- >>> accept nonPositive 0 -- True ---- --
-- >>> accept nonPositive (-1) -- True --nonPositive :: (Ord a, Num a) => Predicate a -- | A Predicate that accepts non-negative numbers of any -- Ordered Num type. -- --
-- >>> accept nonNegative 1 -- True ---- --
-- >>> accept nonNegative 0 -- True ---- --
-- >>> accept nonNegative (-1) -- False --nonNegative :: (Ord a, Num a) => Predicate a -- | A Predicate that accepts finite numbers of any RealFloat -- type. -- --
-- >>> accept finite 1.0 -- True -- -- >>> accept finite (0 / 0) -- False -- -- >>> accept finite (1 / 0) -- False --finite :: RealFloat a => Predicate a -- | A Predicate that accepts infinite numbers of any -- RealFloat type. -- --
-- >>> accept infinite 1.0 -- False -- -- >>> accept infinite (0 / 0) -- False -- -- >>> accept infinite (1 / 0) -- True --infinite :: RealFloat a => Predicate a -- | A Predicate that accepts NaN values of any RealFloat -- type. -- --
-- >>> accept nAn 1.0 -- False -- -- >>> accept nAn (0 / 0) -- True -- -- >>> accept nAn (1 / 0) -- False --nAn :: RealFloat a => Predicate a -- | A conversion from a -> Bool to Predicate. -- This is a fallback that can be used to build a Predicate that -- checks anything at all. However, its description will be less helpful -- than standard Predicates. You can use qIs instead to get -- better descriptions using Template Haskell. -- --
-- >>> accept (is even) 3 -- False -- -- >>> accept (is even) 4 -- True --is :: HasCallStack => (a -> Bool) -> Predicate a -- | A Template Haskell splice that acts like is, but receives a -- quoted expression at compile time and has a more helpful explanation. -- --
-- >>> accept $(qIs [| even |]) 3 -- False -- -- >>> accept $(qIs [| even |]) 4 -- True ---- --
-- >>> show $(qIs [| even |]) -- "even" --qIs :: HasCallStack => ExpQ -> ExpQ -- | A combinator to lift a Predicate to work on a property or -- computed value of the original value. The explanations are less -- helpful that standard predicates like size. You can use -- qWith instead to get better explanations using Template -- Haskell. -- --
-- >>> accept (with abs (gt 5)) (-6) -- True -- -- >>> accept (with abs (gt 5)) (-5) -- False -- -- >>> accept (with reverse (eq "olleh")) "hello" -- True -- -- >>> accept (with reverse (eq "olleh")) "goodbye" -- False --with :: HasCallStack => (a -> b) -> Predicate b -> Predicate a -- | A Template Haskell splice that acts like with, but receives a -- quoted typed expression at compile time and has a more helpful -- explanation. -- --
-- >>> accept ($(qWith [| abs |]) (gt 5)) (-6) -- True -- -- >>> accept ($(qWith [| abs |]) (gt 5)) (-5) -- False -- -- >>> accept ($(qWith [| reverse |]) (eq "olleh")) "hello" -- True -- -- >>> accept ($(qWith [| reverse |]) (eq "olleh")) "goodbye" -- False ---- --
-- >>> show ($(qWith [| abs |]) (gt 5)) -- "abs: > 5" --qWith :: ExpQ -> ExpQ -- | A Predicate that accepts values with a given nested value. This -- is intended to match constructors with arguments. You can use -- qADT instead to get better explanations using Template Haskell. -- --
-- >>> accept (inBranch "Left" (\case {Left x -> Just x; _ -> Nothing}) positive) (Left 1)
-- True
--
-- >>> accept (inBranch "Left" (\case {Left x -> Just x; _ -> Nothing}) positive) (Left 0)
-- False
--
-- >>> accept (inBranch "Left" (\case {Left x -> Just x; _ -> Nothing}) positive) (Right 1)
-- False
--
inBranch :: String -> (a -> Maybe b) -> Predicate b -> Predicate a
qADT :: Name -> ExpQ
-- | A Template Haskell splice that turns a quoted pattern into a predicate
-- that accepts values that match the pattern.
--
-- -- >>> accept $(qMatch [p| Just (Left _) |]) Nothing -- False -- -- >>> accept $(qMatch [p| Just (Left _) |]) (Just (Left 5)) -- True -- -- >>> accept $(qMatch [p| Just (Left _) |]) (Just (Right 5)) -- False ---- --
-- >>> show $(qMatch [p| Just (Left _) |]) -- "Just (Left _)" --qMatch :: PatQ -> ExpQ -- | Converts a Predicate to a new type. Typically used with visible -- type application, as in the examples below. -- --
-- >>> accept (typed @String anything) "foo" -- True -- -- >>> accept (typed @String (sizeIs (gt 5))) "foo" -- False -- -- >>> accept (typed @String anything) (42 :: Int) -- False --typed :: forall a b. (Typeable a, Typeable b) => Predicate a -> Predicate b instance GHC.Show.Show (Test.Predicates.Predicate a) instance Data.Functor.Contravariant.Contravariant Test.Predicates.Predicate -- | QuickCheck integration for Predicate module Test.Predicates.QuickCheck -- | QuickCheck property that checks if a predicate is satisfied. -- --
-- \(Positive x) -> [0 .. x] `satisfies` (containsAll [eq 1, eq 2]) ---- --