úΖ     !Copyright (c) 2017 Vanessa McHaleSafeŽZThe GMP integer type holds information about array size as well as a pointer to an array.Number of limbs allocated.Number of limbs used.)Pointer to an array containing the limbs.Convert a GMP mpz to Haskell's  type.!Copyright (c) 2017 Vanessa McHaleNone ZThe n.th Catalan number, with indexing beginning at 0. See  /http://mathworld.wolfram.com/CatalanNumber.htmlhere. 9»:> mapM catalan [0..9] [1,1,2,5,14,42,132,429,1430,4862] See  5http://mathworld.wolfram.com/BinomialCoefficient.htmlhere. See  1http://mathworld.wolfram.com/DoubleFactorial.htmlhere.   Safe º!Copyright (c) 2017 Vanessa McHaleNone  Indexed starting at 0. O("n)  !Copyright (c) 2017 Vanessa McHaleNoneBThe Jacobi symbol (a/n) (see  .http://mathworld.wolfram.com/JacobiSymbol.htmlhere ) for more.VThis function is somewhat experimental, and improvements to performance are expected.See /http://mathworld.wolfram.com/PerfectNumber.htmlhereSum of proper divisors.Number of distinct divisors.%Euler totient function. Experimental.anSafeöSee  -http://mathworld.wolfram.com/Derangement.htmlhere. V»:> fmap derangement [0..10] :: [Integer] [1,0,1,2,9,44,265,1854,14833,133496,1334961]      !"#.fast-arithmetic-0.3.0.3-8xi1H3DW5J86s96T6Z5trwData.GMPNumeric.CombinatoricsNumeric.IntegerNumeric.NumberTheory Numeric.PureNumeric.CommonGMPInt _mp_alloc_mp_size_mp_d conjugateGMP gmpToInteger$fStorableGMPIntcatalanchoose factorialdoubleFactorial fibonacciisPrimejacobi isPerfect sumDivisors littleOmegatautotient derangement hsIsPrime hsFibonacci integer-gmpGHC.Integer.TypeIntegerasTest conjugateTwo conjugate