{-# LANGUAGE RankNTypes #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TypeSynonymInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} -- -- Copyright (c) 2009-2011, ERICSSON AB -- All rights reserved. -- -- Redistribution and use in source and binary forms, with or without -- modification, are permitted provided that the following conditions are met: -- -- * Redistributions of source code must retain the above copyright notice, -- this list of conditions and the following disclaimer. -- * Redistributions in binary form must reproduce the above copyright -- notice, this list of conditions and the following disclaimer in the -- documentation and/or other materials provided with the distribution. -- * Neither the name of the ERICSSON AB nor the names of its contributors -- may be used to endorse or promote products derived from this software -- without specific prior written permission. -- -- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" -- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE -- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE -- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE -- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL -- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR -- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER -- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. -- {-# LANGUAGE UndecidableInstances #-} -- | A 'Vector' interface to packed sequences of bits -- module Feldspar.BitVector where import qualified Prelude import Data.Word import Data.List (inits) import Data.Proxy import qualified Data.TypeLevel as TL import Language.Syntactic hiding (fold) import Feldspar.Wrap import Feldspar.Prelude import Feldspar hiding (sugar, desugar, resugar) import qualified Feldspar.Vector as Vec -- * Types and classes -- | A 'Unit' is the internal representation of a 'BitVector' class (Type w, Numeric w, Bits w, Integral w) => Unit w where width :: Proxy w -> Length instance Unit Word8 where width _ = 8 instance Unit Word16 where width _ = 16 instance Unit Word32 where width _ = 32 data BitVector w = BitVector { segments :: [Segment w] } data Segment w = Segment { numUnits :: Data Length , elements :: Data Index -> Data w } -- * Feldspar integration of BitVector type instance Elem (BitVector w) = Data Bool type instance CollIndex (BitVector w) = Data Index type instance CollSize (BitVector w) = Data Length instance (Unit a) => Syntactic (BitVector a) where type Domain (BitVector a) = FeldDomainAll type Internal (BitVector a) = [a] desugar = desugar . freezeBitVector sugar = unfreezeBitVector . sugar instance (Unit a) => Syntax (BitVector a) -- * Operations length :: forall w . (Unit w) => BitVector w -> Data Length length bv = Prelude.sum $ Prelude.map segmentLen $ segments bv where segmentLen s = numUnits s * w w = value $ width (Proxy :: Proxy w) numOfUnits :: (Unit w) => BitVector w -> Data Length numOfUnits bv = Prelude.sum $ Prelude.map numUnits $ segments bv freezeBitVector :: forall w . (Unit w) => BitVector w -> Data [w] freezeBitVector bv = freezeSegments $ segments bv where freezeSegments segs = case segs of [] -> value [] (s:ss) -> parallel (numUnits s) (elements s) `append` freezeSegments ss unfreezeBitVector :: forall w . (Unit w) => Data [w] -> BitVector w unfreezeBitVector ws = BitVector [Segment (getLength ws) (ws!)] {- TODO -- | Variant of `unfreezeBitVector` with additional static size information. unfreezeBitVector' :: forall w . (Unit w) => Length -> Data [w] -> BitVector w unfreezeBitVector' len arr = unfreezeBitVector $ cap (r :> elemSize) arr where (_ :> elemSize) = dataSize arr singleton :: a -> Range a singleton x = Range x x r = (singleton (fromIntegral len),singleton (fromIntegral len) ,singleton (fromIntegral len)) -} -- | Transforms a bool vector to a bitvector. -- Length of the vector has to be divisible by the wordlength, -- otherwise booleans at the end will be dropped. fromVector :: forall w . (Unit w, Size w ~ Range w) => Vec.Vector (Data Bool) -> BitVector w fromVector v = BitVector { segments = [Segment wl (loop w)] -- TODO: Should Vector segments be transformed to BitVector segments -- for the sake of efficiency? } where w = value $ width (Proxy :: Proxy w) wl = Vec.length v `div` w loop n ix = forLoop n 0 $ \i st -> st `shiftLU` 1 .|. (v ! (w * ix + i) ? (1,0)) toVector :: forall w . (Unit w, Size w ~ Range w) => BitVector w -> Vec.Vector (Data Bool) toVector bv = Vec.indexed (length bv) (bv!) instance (Unit w, Size w ~ Range w) => Indexed (BitVector w) where bv ! i = help 0 (segments bv) where help _ [] = false -- XXX Should be an error here... help accum [s] = ixf s accum i help accum (s:ss) = i < accum + numUnits s * w ? ( ixf s accum i , help (accum + numUnits s * w) ss ) w = value $ width (Proxy :: Proxy w) ixf s accum ix = testBit (elements s ((ix - accum) `div` w)) (w - 1 - ((ix - accum) `mod` w)) fromBits :: forall w . (Unit w) => [Bool] -> BitVector w fromBits bs = unfreezeBitVector $ value xs where xs = [ conv (Proxy :: Proxy w) $ Prelude.take w (Prelude.drop (i*w) bs) | i <- [0..Prelude.length bs `Prelude.div` w Prelude.- 1]] w = fromInteger $ toInteger $ width (Proxy :: Proxy w) conv :: (Unit w) => Proxy w -> [Bool] -> w conv _ = Prelude.foldl (\n b -> if b then n Prelude.* 2 Prelude.+ 1 else n Prelude.* 2) 0 fromUnits :: (Unit w) => [w] -> BitVector w fromUnits = unfreezeBitVector . value replUnit :: (Unit w) => Data Length -> w -> BitVector w replUnit n u = BitVector [Segment n $ const $ value u] indexed :: (Unit w, Size w ~ Range w) => Data Length -> (Data Index -> Data Bool) -> BitVector w indexed l ixf = fromVector $ Vec.indexed l ixf map :: (Unit w, Size w ~ Range w) => (Data Bool -> Data Bool) -> BitVector w -> BitVector w map f bv = boolFun1 f res where res f' = BitVector $ Prelude.map (\s -> s{elements = f' . elements s}) $ segments bv takeUnits :: forall w . (Unit w) => Data Length -> BitVector w -> BitVector w takeUnits len bv = help len [] $ segments bv where help _ acc [] = BitVector acc help n acc (s:ss) = n < numUnits s ? ( BitVector (acc Prelude.++ [s{numUnits = n}]) , help (n - numUnits s) (acc Prelude.++ [s]) ss ) dropUnits :: forall w . (Unit w) => Data Length -> BitVector w -> BitVector w dropUnits len bv = help len $ segments bv where help _ [] = BitVector [] help n (s:ss) = n < numUnits s ? ( BitVector $ s':ss , help (n - numUnits s) ss ) where s' = Segment { numUnits = numUnits s - n , elements = \i -> elements s (i + n) } (++) :: forall w . (Unit w) => BitVector w -> BitVector w -> BitVector w (BitVector ss) ++ (BitVector zs) = BitVector $ ss Prelude.++ zs drop :: forall w . (Unit w, Size w ~ Range w) => Data Length -> Data w -> BitVector w -> BitVector w drop len end bv = dropSegments len $ segments bv where w = value $ width (Proxy :: Proxy w) dropSegments _ [] = BitVector [] dropSegments n (s:ss) = n < sLen ? ( dropUnits n s ss , dropSegments (n - sLen) ss ) where sLen = numUnits s * w dropUnits n s ss = dropBits bitsToDrop (s':ss) where s' = Segment { numUnits = numUnits s - wordsToDrop , elements = \i -> elements s (i + wordsToDrop) } wordsToDrop = n `div` w bitsToDrop = n `mod` w dropBits _ [] = BitVector [] dropBits n (s:ss) = n > 0 ? ( BitVector $ s' : segments bv' , BitVector (s:ss) ) where s' = Segment { numUnits = numUnits s - 1 , elements = \i -> (elements s i `shiftLU` n) .|. (elements s (i+1) `shiftRU` (w-n)) } bv' = addBits (w - n) (elements s (numUnits s - 1) `shiftLU` n) ss addBits n bs [] = BitVector [Segment 1 $ const $ bs .|. (end `shiftRU` n)] addBits n bs (s:ss) = numUnits s > 0 ? ( BitVector $ s' : segments bv' , addBits n bs ss ) where s' = Segment { numUnits = 1 , elements = const $ bs .|. (elements s 0 `shiftRU` n) } bv' = dropBits (w - n) (s:ss) fold :: forall w a. (Syntax a, Unit w, Size w ~ Range w) => (a -> Data Bool -> a) -> a -> BitVector w -> a fold _ ini (BitVector []) = ini fold f ini (BitVector (s:ss)) = fold f (forLoop (numUnits s) ini f') $ BitVector ss where f' :: Data Index -> a -> a f' i st = Prelude.snd $ forLoop w (elements s i, st) f'' f'' :: Data Index -> (Data w,a) -> (Data w,a) f'' _ (unit,st) = (unit `shiftLU` 1, f st $ testBit unit $ w-1) w = value $ width (Proxy :: Proxy w) zipWith :: forall w. (Unit w, Size w ~ Range w) => (Data Bool -> Data Bool -> Data Bool) -> BitVector w -> BitVector w -> BitVector w zipWith f bv bw = boolFun2 f res where res f' = Prelude.foldl (++) (BitVector []) [ zipSegments f' s z | s <- segIdxs bv, z <- segIdxs bw ] segIdxs bvec = Prelude.zip (segments bvec) $ Prelude.map (Prelude.sum . Prelude.map numUnits) $ inits $ segments bvec zipSegments f' (s,sStart) (z,zStart) = BitVector [ Segment { numUnits = end - start , elements = \i -> f' (elements s (i+sOffset)) (elements z (i+zOffset)) } ] where sEnd = sStart + numUnits s zEnd = zStart + numUnits z start = max sStart zStart end = min sEnd zEnd sOffset = start - sStart zOffset = start - zStart head :: (Unit w, Size w ~ Range w) => BitVector w -> Data Bool head = (!0) tail :: forall w. (Unit w, Size w ~ Range w) => Data Bool -> BitVector w -> BitVector w tail b = drop 1 (b2i b `shiftLU` (w - 1)) where w = value $ width (Proxy :: Proxy w) -- * Boolean functions extended to words boolFun1 :: (Syntax t, Unit w, Size w ~ Range w) => (Data Bool -> Data Bool) -> ((Data w -> Data w) -> t) -> t boolFun1 f c = f true ? ( f false ? (c (const $ complement 0), c id) , f false ? (c complement, c (const 0)) ) boolFun2 :: (Syntax t, Unit w, Size w ~ Range w) => (Data Bool -> Data Bool -> Data Bool) -> ((Data w -> Data w -> Data w) -> t) -> t boolFun2 f c = f true true ? ( f true false ? ( f false true ? ( f false false ? ( c $ \_ _ -> complement 0 , c $ (.|.) ) , f false false ? ( c $ \x y -> x .|. complement y , c $ \x _ -> x ) ) , f false true ? ( f false false ? ( c $ \x y -> complement x .|. y , c $ \_ y -> y ) , f false false ? ( c $ \x y -> complement (x `xor` y) , c $ (.&.) ) ) ) , f true false ? ( f false true ? ( f false false ? ( c $ \x y -> complement (x .&. y) , c $ \x y -> x `xor` y ) , f false false ? ( c $ \_ y -> complement y , c $ \x y -> x .&. complement y ) ) , f false true ? ( f false false ? ( c $ \x _ -> complement x , c $ \x y -> complement x .&. y ) , f false false ? ( c $ \x y -> complement (x .|. y) , c $ \_ _ -> 0 ) ) ) ) -- * Wrapping for bitvectors instance (Unit w) => Wrap (BitVector w) (Data [w]) where wrap = freezeBitVector instance (Wrap t u, Unit w, TL.Nat s) => Wrap (BitVector w -> t) (Data' s [w] -> u) where wrap f = \(Data' d) -> wrap $ f $ unfreezeBitVector $ setLength s' d where s' = fromInteger $ toInteger $ TL.toInt (undefined :: s) -- * Patch combinators for bitvectors tBV :: Patch w w -> Patch (BitVector w) (BitVector w) tBV _ = id