-- Find Dominators of a graph. -- -- Author: Bertram Felgenhauer -- -- Implementation based on -- Keith D. Cooper, Timothy J. Harvey, Ken Kennedy, -- "A Simple, Fast Dominance Algorithm", -- (http://citeseer.ist.psu.edu/cooper01simple.html) module Data.Graph.Inductive.Query.Dominators ( dom, iDom ) where import Data.Graph.Inductive.Graph import Data.Graph.Inductive.Query.DFS import Data.Tree (Tree(..)) import qualified Data.Tree as T import Data.Array import Data.IntMap (IntMap) import qualified Data.IntMap as I -- | return immediate dominators for each node of a graph, given a root iDom :: Graph gr => gr a b -> Node -> [(Node,Node)] iDom g root = let (result, toNode, _) = idomWork g root in map (\(a, b) -> (toNode ! a, toNode ! b)) (assocs result) -- | return the set of dominators of the nodes of a graph, given a root dom :: Graph gr => gr a b -> Node -> [(Node,[Node])] dom g root = let (iDom, toNode, fromNode) = idomWork g root dom' = getDom toNode iDom nodes' = nodes g rest = I.keys (I.filter (-1 ==) fromNode) in [(toNode ! i, dom' ! i) | i <- range (bounds dom')] ++ [(n, nodes') | n <- rest] -- internal node type type Node' = Int -- array containing the immediate dominator of each node, or an approximation -- thereof. the dominance set of a node can be found by taking the union of -- {node} and the dominance set of its immediate dominator. type IDom = Array Node' Node' -- array containing the list of predecessors of each node type Preds = Array Node' [Node'] -- arrays for translating internal nodes back to graph nodes and back type ToNode = Array Node' Node type FromNode = IntMap Node' idomWork :: Graph gr => gr a b -> Node -> (IDom, ToNode, FromNode) idomWork g root = let -- use depth first tree from root do build the first approximation trees@(~[tree]) = dff [root] g -- relabel the tree so that paths from the root have increasing nodes (s, ntree) = numberTree 0 tree -- the approximation iDom0 just maps each node to its parent iDom0 = array (1, s-1) (tail $ treeEdges (-1) ntree) -- fromNode translates graph nodes to relabeled (internal) nodes fromNode = I.unionWith const (I.fromList (zip (T.flatten tree) (T.flatten ntree))) (I.fromList (zip (nodes g) (repeat (-1)))) -- toNode translates internal nodes to graph nodes toNode = array (0, s-1) (zip (T.flatten ntree) (T.flatten tree)) preds = array (1, s-1) [(i, filter (/= -1) (map (fromNode I.!) (pre g (toNode ! i)))) | i <- [1..s-1]] -- iteratively improve the approximation to find iDom. iDom = fixEq (refineIDom preds) iDom0 in if null trees then error "Dominators.idomWork: root not in graph" else (iDom, toNode, fromNode) -- for each node in iDom, find the intersection of all its predecessor's -- dominating sets, and update iDom accordingly. refineIDom :: Preds -> IDom -> IDom refineIDom preds iDom = fmap (foldl1 (intersect iDom)) preds -- find the intersection of the two given dominance sets. intersect :: IDom -> Node' -> Node' -> Node' intersect iDom a b = case a `compare` b of LT -> intersect iDom a (iDom ! b) EQ -> a GT -> intersect iDom (iDom ! a) b -- convert an IDom to dominance sets. we translate to graph nodes here -- because mapping later would be more expensive and lose sharing. getDom :: ToNode -> IDom -> Array Node' [Node] getDom toNode iDom = let res = array (0, snd (bounds iDom)) ((0, [toNode ! 0]) : [(i, toNode ! i : res ! (iDom ! i)) | i <- range (bounds iDom)]) in res -- relabel tree, labeling vertices with consecutive numbers in depth first order numberTree :: Node' -> Tree a -> (Node', Tree Node') numberTree n (Node _ ts) = let (n', ts') = numberForest (n+1) ts in (n', Node n ts') -- same as numberTree, for forests. numberForest :: Node' -> [Tree a] -> (Node', [Tree Node']) numberForest n [] = (n, []) numberForest n (t:ts) = let (n', t') = numberTree n t (n'', ts') = numberForest n' ts in (n'', t':ts') -- return the edges of the tree, with an added dummy root node. treeEdges :: a -> Tree a -> [(a,a)] treeEdges a (Node b ts) = (b,a) : concatMap (treeEdges b) ts -- find a fixed point of f, iteratively fixEq :: Eq a => (a -> a) -> a -> a fixEq f v | v' == v = v | otherwise = fixEq f v' where v' = f v {- :m +Data.Graph.Inductive let g0 = mkGraph [(i,()) | i <- [0..4]] [(a,b,()) | (a,b) <- [(0,1),(1,2),(0,3),(3,2),(4,0)]] :: Gr () () let g1 = mkGraph [(i,()) | i <- [0..4]] [(a,b,()) | (a,b) <- [(0,1),(1,2),(2,3),(1,3),(3,4)]] :: Gr () () let g2,g3,g4 :: Int -> Gr () (); g2 n = mkGraph [(i,()) | i <- [0..n-1]] ([(a,a+1,()) | a <- [0..n-2]] ++ [(a,a+2,()) | a <- [0..n-3]]); g3 n =mkGraph [(i,()) | i <- [0..n-1]] ([(a,a+2,()) | a <- [0..n-3]] ++ [(a,a+1,()) | a <- [0..n-2]]); g4 n =mkGraph [(i,()) | i <- [0..n-1]] ([(a+2,a,()) | a <- [0..n-3]] ++ [(a+1,a,()) | a <- [0..n-2]]) :m -Data.Graph.Inductive -}