{- - Copyright (C) 2019 Koz Ross - - This program is free software: you can redistribute it and/or modify - it under the terms of the GNU General Public License as published by - the Free Software Foundation, either version 3 of the License, or - (at your option) any later version. - - This program is distributed in the hope that it will be useful, - but WITHOUT ANY WARRANTY; without even the implied warranty of - MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - GNU General Public License for more details. - - You should have received a copy of the GNU General Public License - along with this program. If not, see . -} {-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-} {-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-} {-# LANGUAGE Trustworthy #-} {-# LANGUAGE ConstrainedClassMethods #-} {-# LANGUAGE TypeInType #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE DefaultSignatures #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE CPP #-} #if MIN_VERSION_base(4,12,0) {-# LANGUAGE NoStarIsType #-} #endif -- | -- Module: Data.Finitary -- Description: A type class witnessing that a type has finite cardinality. -- Copyright: (C) Koz Ross, 2019 -- License: GPL version 3.0 or later -- Maintainer: koz.ross@retro-freedom.nz -- Stability: Experimental -- Portability: GHC only -- -- This package provides the 'Finitary' type class, as well as a range of useful -- \'base\' instances for commonly-used finitary types. -- -- For your own types, there are three possible ways to define an instance of -- 'Finitary': -- -- __Via 'Generic'__ -- -- If your data type implements 'Generic' (and is finitary), you can -- automatically derive your instance: -- -- > {-# LANGUAGE DeriveAnyClass #-} -- > {-# LANGUAGE DeriveGeneric #-} -- > -- > import GHC.Generics -- > import Data.Word -- > -- > data Foo = Bar | Baz (Word8, Word8) | Quux Word16 -- > deriving (Eq, Generic, Finitary) -- -- This is the easiest method, and also the safest, as GHC will automatically -- determine the cardinality of @Foo@, as well as defining law-abiding methods. -- It may be somewhat slower than a \'hand-rolled\' method in some cases. -- -- __By defining only 'Cardinality', 'fromFinite' and 'toFinite'__ -- -- If you want a manually-defined instance, but don't wish to define every -- method, only 'fromFinite' and 'toFinite' are needed, along with -- 'Cardinality'. 'Cardinality' in particular must be defined with care, as -- otherwise, you may end up with inconstructable values or indexes that don't -- correspond to anything. -- -- __By defining everything__ -- -- For maximum control, you can define all the methods. Ensure you follow all -- the laws! -- module Data.Finitary ( Finitary(..) ) where import Data.Bifunctor (bimap, first) import Numeric.Natural (Natural) import Data.Semigroup (Max, Min, Sum, Product, Dual, Last, First, Any, All) import Data.Functor.Identity (Identity) import Data.Int (Int8, Int16, Int32, Int64) import Data.Word (Word8, Word16, Word32, Word64) import Data.Proxy (Proxy(..)) import Data.Void (Void) import Data.Bool (bool) import CoercibleUtils (op) import GHC.Generics (Generic, Rep, U1(..), K1(..), V1, (:+:)(..), (:*:)(..), M1(..), from, to) import Control.Applicative (Alternative(..), Const) import Data.Kind (Type) import GHC.TypeNats import Data.Finite (Finite, separateSum, separateProduct, combineProduct, weakenN, shiftN) import Data.Ord (Down(..)) import Control.Monad.Primitive (PrimMonad(..)) import Control.Monad (forM_, join) import GHC.TypeLits.Compare (isLE) import Data.Type.Equality ((:~:)(..)) import Control.Monad.ST (ST, runST) import Foreign.Storable (Storable) import qualified Data.Bit as B import qualified Data.Bit.ThreadSafe as BTS import qualified Data.Vector.Sized as VS import qualified Data.Vector.Generic as VG import qualified Data.Vector.Mutable.Sized as VMS import qualified Data.Vector.Generic.Sized as VGS import qualified Data.Vector.Generic.Mutable as VGM import qualified Data.Vector.Generic.Mutable.Sized as VGMS import qualified Data.Vector.Unboxed.Sized as VUS import qualified Data.Vector.Unboxed.Mutable.Sized as VUMS import qualified Data.Vector.Storable.Sized as VSS import qualified Data.Vector.Storable.Mutable.Sized as VSMS import Data.Finitary.TH -- | Witnesses an isomorphism between @a@ and some @(KnownNat n) => Finite n@. -- Effectively, a lawful instance of this shows that @a@ has exactly @n@ -- (non-@_|_@) inhabitants, and that we have a bijection with 'fromFinite' and -- 'toFinite' as each \'direction\'. -- -- For any type @a@ with an instance of @Finitary@, for every non-@_|_@ @x :: a@, we have -- a unique /index/ @i :: Finite n@. We will also refer to any such @x@ as an -- /inhabitant/ of @a@. We can convert inhabitants to indexes using @toFinite@, -- and also convert indexes to inhabitants with @fromFinite@. -- -- __Laws__ -- -- The main laws state that 'fromFinite' should be a bijection, with 'toFinite' as -- its inverse, and 'Cardinality' must be a truthful representation of the -- cardinality of the type. Thus: -- -- * \[\texttt{fromFinite} \circ \texttt{toFinite} = \texttt{toFinite} \circ -- \texttt{fromFinite} = \texttt{id}\] -- * \[\forall x, y :: \texttt{Finite} \; (\texttt{Cardinality} \; a) \; \texttt{fromFinite} \; x = \texttt{fromFinite} \; y -- \rightarrow x = y\] -- * \[\forall x :: \texttt{Finite} \; (\texttt{Cardinality} \; a) \; \exists y :: a \mid \texttt{fromFinite} \; x -- = y\] -- -- Furthermore, 'fromFinite' should be _order-preserving_. Namely, if @a@ is an -- instance of @Ord@, we must have: -- -- * \[\forall i, j :: \texttt{Finite} \; (\texttt{Cardinality} \; a) \; -- \texttt{fromFinite} \; i \leq \texttt{fromFinite} \; j \rightarrow i \leq j \] -- -- Lastly, if you define any of the other methods, these laws must hold: -- -- * \[ a \neq \emptyset \rightarrow \texttt{start} = \texttt{fromFinite} \; \texttt{minBound} \] -- * \[ a \neq \emptyset \rightarrow \texttt{end} = \texttt{fromFinite} \; \texttt{maxBound} \] -- * \[ \forall x :: a \; \texttt{end} \neq x \rightarrow \texttt{next} \; x = -- (\texttt{fromFinite} \circ + 1 \circ \texttt{toFinite}) \; x \] -- * \[ \forall i :: \texttt{Finite} \; (\texttt{Cardinality} \; a) \; \texttt{nextSkipping} \; i = -- \underbrace{\texttt{next} \circ \ldots \circ \texttt{next}}_{i} \] -- * \[ \forall x :: a \; \texttt{start} \neq x \rightarrow \texttt{previous} \; x = -- (\texttt{fromFinite} \circ - 1 \circ \texttt{toFinite}) \; x \] -- * \[ \forall i :: \texttt{Finite} \; (\texttt{Cardinality} \; a) \; -- \texttt{previousSkipping} \; i = \underbrace{\texttt{previous} \circ -- \ldots \circ \texttt{previous}}_{i} \] -- * \[ \forall x :: a \; \texttt{enumerateFrom} \; x = \texttt{fromFinite <\$> [toFinite} \; x \texttt{..]} \] -- * \[ \forall x, y :: a \; \texttt{enumerateFromThen} \; x y = -- \texttt{fromFinite <\$> [toFinite} \; x \texttt{, }\; y \texttt{..]} \] -- * \[ \forall x, y :: a \; \texttt{enumerateFromTo} \; x \; y = -- \texttt{fromFinite <\$> [toFinite} \; x \texttt{..} \; y \texttt{]} \] -- * \[ \forall x, y, z :: a \; \texttt{enumerateFromThenTo} \; x \; y \; z = -- \texttt{fromFinite <\$> [toFinite} \; x \texttt{,} \; y \texttt{..} \; z \texttt{]} \] -- -- Together with the fact that @Finite n@ is well-ordered whenever @KnownNat n@ -- holds, a law-abiding @Finitary@ instance for a type @a@ defines a constructive -- [well-order](https://en.wikipedia.org/wiki/Well-order), witnessed by -- 'toFinite' and 'fromFinite', which agrees with the @Ord@ instance for @a@, if -- any. -- -- We /strongly/ suggest that @fromFinite@ and @toFinite@ should have -- time complexity \(\Theta(1)\), or, if that's not possible, \(O(\texttt{Cardinality} \; a)\). -- The latter is the case for instances generated using -- @Generics@-based derivation, but not for \'basic\' types; thus, these -- functions for your derived types will only be as slow as their \'structure\', -- rather than their \'contents\', provided the contents are of these \'basic\' -- types. class (Eq a, KnownNat (Cardinality a)) => Finitary (a :: Type) where -- | How many (non-@_|_@) inhabitants @a@ has, as a typelevel natural number. type Cardinality a :: Nat type Cardinality a = GCardinality (Rep a) -- | Converts an index into its corresponding inhabitant. fromFinite :: Finite (Cardinality a) -> a default fromFinite :: (Generic a, GFinitary (Rep a), Cardinality a ~ GCardinality (Rep a)) => Finite (Cardinality a) -> a fromFinite = to . gFromFinite -- | Converts an inhabitant to its corresponding index. toFinite :: a -> Finite (Cardinality a) default toFinite :: (Generic a, GFinitary (Rep a), Cardinality a ~ GCardinality (Rep a)) => a -> Finite (Cardinality a) toFinite = gToFinite . from -- | The first inhabitant, by index, assuming @a@ has any inhabitants. start :: (1 <= Cardinality a) => a start = fromFinite minBound -- | The last inhabitant, by index, assuming @a@ has any inhabitants. end :: (1 <= Cardinality a) => a end = fromFinite maxBound -- | @previous x@ gives the inhabitant whose index precedes the index of @x@, -- or 'empty' if no such index exists. previous :: (Alternative f) => a -> f a previous = fmap fromFinite . guarded (/= maxBound) . dec . toFinite -- | @previousSkipping i x@ \'skips back\' @i@ index values from the index of -- @x@, then gives the inhabitant whose index precedes the result, or 'empty' -- if no such index exists. previousSkipping :: (Alternative f) => Finite (Cardinality a) -> a -> f a previousSkipping i x = fmap fromFinite . guarded (> index) . subtract i $ index where index = toFinite x -- | @next x@ gives the inhabitant whose index follows the index of @x@, or -- 'empty' if no such index exists. next :: (Alternative f) => a -> f a next = fmap fromFinite . guarded (/= minBound) . inc . toFinite -- | @nextSkipping i x@ \'skips forward\' @i@ index values from the index of -- @x@, then gives the inhabitant whose index follows the result, or 'empty' -- if no such index exists. nextSkipping :: (Alternative f) => Finite (Cardinality a) -> a -> f a nextSkipping i x = fmap fromFinite . guarded (< index) . (+ i) $ index where index = toFinite x -- | @enumerateFrom x@ gives a list of inhabitants, starting with @x@, -- followed by all other values whose indexes follow @x@, in index order. enumerateFrom :: a -> [a] enumerateFrom x = fromFinite <$> [toFinite x ..] -- | Like @enumerateFrom@, except in steps of @toFinite y - toFinite x@. enumerateFromThen :: a -> a -> [a] enumerateFromThen x y = fromFinite <$> [toFinite x, toFinite y ..] -- | @enumerateFromTo x y@ gives a list of inhabitants, starting with @x@, -- ending with @y@, and containing all other values whose indices lie between -- those of @x@ and @y@. The list is in index order. enumerateFromTo :: a -> a -> [a] enumerateFromTo x y = fromFinite <$> [toFinite x .. toFinite y] -- | Like @enumerateFromTo@, except in steps of @toFinite y - toFinite x@. enumerateFromThenTo :: a -> a -> a -> [a] enumerateFromThenTo x y z = fromFinite <$> [toFinite x, toFinite y .. toFinite z] class (KnownNat (GCardinality a)) => GFinitary (a :: Type -> Type) where type GCardinality a :: Nat gFromFinite :: Finite (GCardinality a) -> a x gToFinite :: a x -> Finite (GCardinality a) instance GFinitary V1 where type GCardinality V1 = 0 {-# INLINE gFromFinite #-} gFromFinite = const undefined {-# INLINE gToFinite #-} gToFinite = const undefined instance GFinitary U1 where type GCardinality U1 = 1 {-# INLINE gFromFinite #-} gFromFinite = const U1 {-# INLINE gToFinite #-} gToFinite = const 0 instance (Finitary a) => GFinitary (K1 _1 a) where type GCardinality (K1 _1 a) = Cardinality a {-# INLINE gFromFinite #-} gFromFinite = K1 . fromFinite {-# INLINE gToFinite #-} gToFinite = toFinite . op K1 instance (GFinitary a, GFinitary b) => GFinitary (a :+: b) where type GCardinality (a :+: b) = GCardinality a + GCardinality b {-# INLINE gFromFinite #-} gFromFinite = either (L1 . gFromFinite) (R1 . gFromFinite) . separateSum {-# INLINE gToFinite #-} gToFinite (L1 x) = weakenN . gToFinite $ x gToFinite (R1 x) = shiftN . gToFinite $ x instance (GFinitary a, GFinitary b) => GFinitary (a :*: b) where type GCardinality (a :*: b) = GCardinality a * GCardinality b {-# INLINE gFromFinite #-} gFromFinite i = let (x, y) = separateProduct' i in gFromFinite x :*: gFromFinite y {-# INLINE gToFinite #-} gToFinite (x :*: y) = combineProduct' @(GCardinality a) @(GCardinality b) (weakenN . gToFinite $ x, weakenN . gToFinite $ y) instance (GFinitary a) => GFinitary (M1 _x _y a) where type GCardinality (M1 _x _y a) = GCardinality a {-# INLINE gFromFinite #-} gFromFinite = M1 . gFromFinite {-# INLINE gToFinite #-} gToFinite = gToFinite . op M1 -- * Instances -- Basic types instance Finitary Void instance Finitary () instance Finitary (Proxy a) instance Finitary Bool instance Finitary Any instance Finitary All instance Finitary B.Bit where type Cardinality B.Bit = 2 {-# INLINE fromFinite #-} fromFinite = B.Bit . toEnum . fromEnum {-# INLINE toFinite #-} toFinite = toEnum . fromEnum . op B.Bit {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = fmap succ . guarded (== minBound) {-# INLINE previous #-} previous = fmap pred . guarded (== maxBound) {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary BTS.Bit where type Cardinality BTS.Bit = 2 {-# INLINE fromFinite #-} fromFinite = BTS.Bit . toEnum . fromEnum {-# INLINE toFinite #-} toFinite = toEnum . fromEnum . op BTS.Bit {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = fmap succ . guarded (== minBound) {-# INLINE previous #-} previous = fmap pred . guarded (== maxBound) {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary Ordering -- | 'Char' has one inhabitant per Unicode code point. instance Finitary Char where type Cardinality Char = $(charCardinality) {-# INLINE fromFinite #-} fromFinite = toEnum . fromEnum {-# INLINE toFinite #-} toFinite = toEnum . fromEnum {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = fmap succ . guarded (/= maxBound) {-# INLINE previous #-} previous = fmap pred . guarded (/= minBound) {-# INLINE previousSkipping #-} previousSkipping i = fmap toEnum . guarded (>= 0) . subtract (fromIntegral i) . fromEnum {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary Word8 where type Cardinality Word8 = $(cardinalityOf @Word8) {-# INLINE fromFinite #-} fromFinite = toEnum . fromEnum {-# INLINE toFinite #-} toFinite = toEnum . fromEnum {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = fmap succ . guarded (/= maxBound) {-# INLINE previous #-} previous = fmap pred . guarded (/= minBound) {-# INLINE previousSkipping #-} previousSkipping i = fmap fromIntegral . guarded (>= 0) . subtract (fromIntegral i) . fromIntegral @_ @Int {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary Word16 where type Cardinality Word16 = $(cardinalityOf @Word16) {-# INLINE fromFinite #-} fromFinite = toEnum . fromEnum {-# INLINE toFinite #-} toFinite = toEnum . fromEnum {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = fmap succ . guarded (/= maxBound) {-# INLINE previous #-} previous = fmap pred . guarded (/= minBound) {-# INLINE previousSkipping #-} previousSkipping i = fmap fromIntegral . guarded (>= 0) . subtract (fromIntegral i) . fromIntegral @_ @Int {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary Word32 where type Cardinality Word32 = $(cardinalityOf @Word32) {-# INLINE fromFinite #-} fromFinite = fromIntegral {-# INLINE toFinite #-} toFinite = fromIntegral {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = guarded (== minBound) . inc {-# INLINE previous #-} previous = guarded (== maxBound) . dec {-# INLINE previousSkipping #-} previousSkipping i = fmap fromIntegral . guarded (>= 0) . subtract (fromIntegral i) . fromIntegral @_ @Integer {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary Word64 where type Cardinality Word64 = $(cardinalityOf @Word64) {-# INLINE fromFinite #-} fromFinite = fromIntegral {-# INLINE toFinite #-} toFinite = fromIntegral {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = guarded (== minBound) . inc {-# INLINE previous #-} previous = guarded (== maxBound) . dec {-# INLINE previousSkipping #-} previousSkipping i = fmap fromIntegral . guarded (>= 0) . subtract (fromIntegral i) . fromIntegral @_ @Integer {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary Int8 where type Cardinality Int8 = $(cardinalityOf @Int8) {-# INLINE fromFinite #-} fromFinite = fromIntegral . subtract 128 . fromIntegral @_ @Int16 {-# INLINE toFinite #-} toFinite = fromIntegral . (+ 128) . fromIntegral @_ @Int16 {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = fmap succ . guarded (/= maxBound) {-# INLINE previous #-} previous = fmap pred . guarded (/= minBound) {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary Int16 where type Cardinality Int16 = $(cardinalityOf @Int16) {-# INLINE fromFinite #-} fromFinite = fromIntegral . subtract 32768 . fromIntegral @_ @Int32 {-# INLINE toFinite #-} toFinite = fromIntegral . (+ 32768) . fromIntegral @_ @Int32 {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = fmap succ . guarded (/= maxBound) {-# INLINE previous #-} previous = fmap pred . guarded (/= minBound) {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary Int32 where type Cardinality Int32 = $(cardinalityOf @Int32) {-# INLINE fromFinite #-} fromFinite = fromIntegral @_ @Int32 . subtract $(adjustmentOf @Int32) . fromIntegral @_ @Integer {-# INLINE toFinite #-} toFinite = fromIntegral . (+ $(adjustmentOf @Int32)) . fromIntegral @_ @Integer . fromEnum {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = guarded (== minBound) . inc {-# INLINE previous #-} previous = guarded (== maxBound) . dec {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo instance Finitary Int64 where type Cardinality Int64 = $(cardinalityOf @Int64) {-# INLINE fromFinite #-} fromFinite = fromIntegral @_ @Int64 . subtract $(adjustmentOf @Int64) . fromIntegral @_ @Integer {-# INLINE toFinite #-} toFinite = fromIntegral . (+ $(adjustmentOf @Int64)) . fromIntegral @_ @Integer . fromEnum {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = guarded (== minBound) . inc {-# INLINE previous #-} previous = guarded (== maxBound) . dec {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo -- Variable-width instances -- | 'Int' has a finite number of inhabitants, varying by platform. This -- instance will determine this when the library is built. instance Finitary Int where type Cardinality Int = $(cardinalityOf @Int) {-# INLINE fromFinite #-} fromFinite = fromIntegral @_ @Int . subtract $(adjustmentOf @Int) . fromIntegral @_ @Integer {-# INLINE toFinite #-} toFinite = fromIntegral . (+ $(adjustmentOf @Int)) . fromIntegral @_ @Integer . fromEnum {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = guarded (== minBound) . inc {-# INLINE previous #-} previous = guarded (== maxBound) . dec {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo -- | 'Word' has a finite number of inhabitants, varying by platform. This -- instance will determine this when the library is built. instance Finitary Word where type Cardinality Word = $(cardinalityOf @Word) {-# INLINE fromFinite #-} fromFinite = fromIntegral {-# INLINE toFinite #-} toFinite = fromIntegral {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = guarded (== minBound) . inc {-# INLINE previous #-} previous = guarded (== maxBound) . dec {-# INLINE previousSkipping #-} previousSkipping i = fmap fromIntegral . guarded (>= 0) . subtract (fromIntegral i) . fromIntegral @_ @Integer {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo -- | Since any type is isomorphic to itself, it follows that a \'valid\' @Finite -- n@ (meaning that @n@ is a 'KnownNat') has finite cardinality. instance (KnownNat n) => Finitary (Finite n) where type Cardinality (Finite n) = n {-# INLINE fromFinite #-} fromFinite = id {-# INLINE toFinite #-} toFinite = id {-# INLINE start #-} start = minBound {-# INLINE end #-} end = maxBound {-# INLINE next #-} next = guarded (== minBound) . inc {-# INLINE previous #-} previous = guarded (== maxBound) . dec {-# INLINE previousSkipping #-} previousSkipping i = guarded (< i) . subtract i {-# INLINE enumerateFrom #-} enumerateFrom = enumFrom {-# INLINE enumerateFromThen #-} enumerateFromThen = enumFromThen {-# INLINE enumerateFromTo #-} enumerateFromTo = enumFromTo {-# INLINE enumerateFromThenTo #-} enumerateFromThenTo = enumFromThenTo -- | @Maybe a@ introduces one additional inhabitant (namely, 'Nothing') to @a@. instance (Finitary a) => Finitary (Maybe a) -- | The sum of two finite types will also be finite, with a cardinality equal -- to the sum of their cardinalities. instance (Finitary a, Finitary b) => Finitary (Either a b) -- | The product of two finite types will also be finite, with a cardinality -- equal to the product of their cardinalities. instance (Finitary a, Finitary b) => Finitary (a, b) instance (Finitary a, Finitary b, Finitary c) => Finitary (a, b, c) instance (Finitary a, Finitary b, Finitary c, Finitary d) => Finitary (a, b, c, d) instance (Finitary a, Finitary b, Finitary c, Finitary d, Finitary e) => Finitary (a, b, c, d, e) instance (Finitary a, Finitary b, Finitary c, Finitary d, Finitary e, Finitary f) => Finitary (a, b, c, d, e, f) instance (Finitary a) => Finitary (Const a b) -- | For any @newtype@-esque thing over a type with a @Finitary@ instance, we -- can just \'inherit\' the behaviour of @a@. instance (Finitary a) => Finitary (Sum a) instance (Finitary a) => Finitary (Product a) instance (Finitary a) => Finitary (Dual a) instance (Finitary a) => Finitary (Last a) instance (Finitary a) => Finitary (First a) instance (Finitary a) => Finitary (Identity a) instance (Finitary a) => Finitary (Max a) instance (Finitary a) => Finitary (Min a) -- | Despite the @newtype@-esque nature of @Down@, due to the requirement that -- 'fromFinite' is order-preserving, the instance for @Down a@ reverses the -- indexing. instance (Finitary a) => Finitary (Down a) where type Cardinality (Down a) = Cardinality a {-# INLINE fromFinite #-} fromFinite = Down . fromFinite . opp where opp = fromIntegral @_ @(Finite (Cardinality a)) . (`mod` n) . (* (n - 1)) . (+ 1) . fromIntegral @_ @Natural n = natVal @(Cardinality a) Proxy {-# INLINE toFinite #-} toFinite = fromIntegral @_ @(Finite (Cardinality a)) . (`mod` n) . (* (n - 1)) . (+ 1) . fromIntegral @_ @Natural . toFinite . op Down where n = natVal @(Cardinality a) Proxy -- | A fixed-length vector over a type @a@ with an instance of @Finitary@ can be -- thought of as a fixed-length word over an alphabet of size @Cardinality a@. -- Since there are only finitely-many of these, we can index them in lex order, -- with the ordering determined by the @Finitary a@ instance (thus, the -- \'first\' such @Vector@ is the one where each element is @start :: a@, and -- the \'last\' is the one where each element is @end :: a@). instance (Finitary a, KnownNat n) => Finitary (VS.Vector n a) where type Cardinality (VS.Vector n a) = Cardinality a ^ n {-# INLINE fromFinite #-} fromFinite i = runST (go i) where go :: Finite (Cardinality (VS.Vector n a)) -> ST s (VS.Vector n a) go ix = do v <- VMS.new unroll v ix VS.unsafeFreeze v {-# INLINE toFinite #-} toFinite = roll instance (Finitary a, VUMS.Unbox a, KnownNat n) => Finitary (VUS.Vector n a) where type Cardinality (VUS.Vector n a) = Cardinality a ^ n {-# INLINE fromFinite #-} fromFinite i = runST (go i) where go :: Finite (Cardinality (VUS.Vector n a)) -> ST s (VUS.Vector n a) go ix = do v <- VUMS.new unroll v ix VUS.unsafeFreeze v {-# INLINE toFinite #-} toFinite = roll instance (Finitary a, Storable a, KnownNat n) => Finitary (VSS.Vector n a) where type Cardinality (VSS.Vector n a) = Cardinality a ^ n {-# INLINE fromFinite #-} fromFinite i = runST (go i) where go :: Finite (Cardinality (VSS.Vector n a)) -> ST s (VSS.Vector n a) go ix = do v <- VSMS.new unroll v ix VSS.unsafeFreeze v {-# INLINE toFinite #-} toFinite = roll -- Helpers combineProduct' :: forall n m . (KnownNat n, KnownNat m) => (Finite n, Finite m) -> Finite (n * m) combineProduct' = fromIntegral . uncurry (+) . first ((natVal $ Proxy @m) *) . bimap @_ @_ @Natural @_ @Natural fromIntegral fromIntegral separateProduct' :: forall n m . (KnownNat n, KnownNat m) => Finite (n * m) -> (Finite n, Finite m) separateProduct' = bimap (fromIntegral . (\x -> fromIntegral x `div` natVal @m Proxy)) (fromIntegral . (\x -> fromIntegral x `mod` natVal @m Proxy)) . join (,) unroll :: forall a m v n . (Finitary a, PrimMonad m, KnownNat n, VGM.MVector v a) => VGMS.MVector v n (PrimState m) a -> Finite (Cardinality a ^ n) -> m () unroll v acc = forM_ @_ @_ @_ @() (isLE (Proxy @1) (Proxy @n)) (\Refl -> do let (d, r) = separateProduct @(Cardinality a ^ (n -1)) @(Cardinality a) acc let x = fromFinite r VGMS.write v 0 x unroll (VGMS.tail v) d) roll :: forall a v n . (Finitary a, VG.Vector v a, KnownNat n) => VGS.Vector v n a -> Finite (Cardinality a ^ n) roll v = case isLE (Proxy @1) (Proxy @n) of Nothing -> 0 Just Refl -> let (h, t) = (VGS.head v, VGS.tail v) in combineProduct (roll t, toFinite h) {-# INLINE inc #-} inc :: (Num a) => a -> a inc = (+ 1) {-# INLINE dec #-} dec :: (Num a) => a -> a dec = subtract 1 {-# INLINE guarded #-} guarded :: forall (a :: Type) (f :: Type -> Type) . (Alternative f) => (a -> Bool) -> a -> f a guarded p x = bool empty (pure x) (p x)