-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | A new formatting library -- -- A new formatting library that tries to be simple to understand while -- still being powerful and providing more convenience features than -- other libraries (like functions for pretty-printing maps and lists, or -- a function for printing arbitrary datatypes using generics). -- -- A comparison with other libraries: -- --
-- >>> hexF 3635
-- "e33"
--
-- >>> hexF ("\0\50\63\80" :: BS.ByteString)
-- "00323f50"
--
hexF :: FormatAsHex a => a -> Builder
class FormatAsBase64 a
-- | Convert a bytestring to base64:
--
--
-- >>> base64F ("\0\50\63\80" :: BS.ByteString)
-- "ADI/UA=="
--
base64F :: FormatAsBase64 a => a -> Builder
-- | Convert a bytestring to base64url (a variant of base64 which omits
-- / and thus can be used in URLs):
--
--
-- >>> base64UrlF ("\0\50\63\80" :: BS.ByteString)
-- "ADI_UA=="
--
base64UrlF :: FormatAsBase64 a => a -> Builder
class TupleF a
-- | Format a tuple (of up to 8 elements):
--
-- -- >>> tupleF (1,2,"hi") -- "(1, 2, hi)" ---- -- If any of the elements takes several lines, an alternate format is -- used: -- --
-- >>> fmt $ tupleF ("test","foo\nbar","more test")
-- ( test
-- ,
-- foo
-- bar
-- ,
-- more test )
--
tupleF :: TupleF a => a -> Builder
class GBuildable f
gbuild :: GBuildable f => f a -> Builder
class GetFields f
-- | Get fields, together with their names if available
getFields :: GetFields f => f a -> [(String, Builder)]
-- | A more powerful Buildable used for genericF. Can build
-- functions, tuples, lists, maps, etc., as well as combinations thereof.
class Buildable' a
build' :: Buildable' a => a -> Builder
-- | Something like PrintfType in Text.Printf.
class FormatType r
format' :: FormatType r => Format -> [Builder] -> r
groupInt :: (Buildable a, Integral a) => Int -> Char -> a -> Builder
atBase :: Integral a => Int -> a -> String
showSigned' :: Real a => (a -> ShowS) -> a -> ShowS
intToDigit' :: Int -> Char
-- | Add a prefix to the first line, and indent all lines but the first
-- one.
--
-- The output will always end with a newline, even when the input
-- doesn't.
indent' :: Int -> Text -> Builder -> Builder
instance Fmt.Internal.FromBuilder Data.Text.Internal.Builder.Builder
instance a ~ GHC.Types.Char => Fmt.Internal.FromBuilder [a]
instance Fmt.Internal.FromBuilder Data.Text.Internal.Text
instance Fmt.Internal.FromBuilder Data.Text.Internal.Lazy.Text
instance a ~ () => Fmt.Internal.FromBuilder (GHC.Types.IO a)
instance Fmt.Internal.FormatAsHex Data.ByteString.Internal.ByteString
instance Fmt.Internal.FormatAsHex Data.ByteString.Lazy.Internal.ByteString
instance GHC.Real.Integral a => Fmt.Internal.FormatAsHex a
instance Fmt.Internal.FormatAsBase64 Data.ByteString.Internal.ByteString
instance Fmt.Internal.FormatAsBase64 Data.ByteString.Lazy.Internal.ByteString
instance (Data.Text.Buildable.Buildable a, Fmt.Internal.FormatType r) => Fmt.Internal.FormatType (a -> r)
instance Fmt.Internal.FromBuilder r => Fmt.Internal.FormatType r
module Fmt
-- | Concatenate, then convert
(#|) :: (FromBuilder b) => Builder -> Builder -> b
infixr 1 #|
-- | build and concatenate, then convert
(|#) :: (Buildable a, FromBuilder b) => a -> Builder -> b
infixr 1 |#
-- | Concatenate, then convert
(#||) :: (FromBuilder b) => Builder -> Builder -> b
infixr 1 #||
-- | show and concatenate, then convert
(||#) :: (Show a, FromBuilder b) => a -> Builder -> b
infixr 1 ||#
(|##|) :: (Buildable a, FromBuilder b) => a -> Builder -> b
infixr 1 |##|
(||##||) :: (Show a, FromBuilder b) => a -> Builder -> b
infixr 1 ||##||
(|##||) :: (Show a, FromBuilder b) => a -> Builder -> b
infixr 1 |##||
(||##|) :: (Buildable a, FromBuilder b) => a -> Builder -> b
infixr 1 ||##|
-- | An old-style formatting function taken from text-format (see
-- Data.Text.Format). Unlike format from
-- Data.Text.Format, it can produce String and strict
-- Text as well (and print to console too). Also it's
-- polyvariadic:
--
--
-- >>> format "{} + {} = {}" 2 2 4
-- "2 + 2 = 4"
--
--
-- You can use arbitrary formatters:
--
--
-- >>> format "0x{} + 0x{} = 0x{}" (hexF 130) (hexF 270) (hexF (130+270))
-- "0x82 + 0x10e = 0x190"
--
format :: FormatType r => Format -> r
-- | Like format, but adds a newline.
formatLn :: FormatType r => Format -> r
-- | A format string. This is intentionally incompatible with other string
-- types, to make it difficult to construct a format string by
-- concatenating string fragments (a very common way to accidentally make
-- code vulnerable to malicious data).
--
-- This type is an instance of IsString, so the easiest way to
-- construct a query is to enable the OverloadedStrings language
-- extension and then simply write the query in double quotes.
--
--
-- {-# LANGUAGE OverloadedStrings #-}
--
-- import Data.Text.Format
--
-- f :: Format
-- f = "hello {}"
--
--
-- The underlying type is Text, so literal Haskell strings that
-- contain Unicode characters will be correctly handled.
data Format :: *
-- | fmt converts things to String, Text or
-- Builder.
--
-- Most of the time you won't need it, as strings produced with
-- (#|) and (|#) can already be used as String,
-- Text, etc. However, combinators like listF can only
-- produce Builder (for better type inference), and you need to
-- use fmt on them.
--
-- Also, fmt can do printing:
--
-- -- >>> fmt "Hello world!\n" -- Hello world! --fmt :: FromBuilder b => Builder -> b -- | Like fmt, but appends a newline. fmtLn :: FromBuilder b => Builder -> b -- | A Builder is an efficient way to build lazy Text -- values. There are several functions for constructing builders, but -- only one to inspect them: to extract any data, you have to turn them -- into lazy Text values using toLazyText. -- -- Internally, a builder constructs a lazy Text by filling -- arrays piece by piece. As each buffer is filled, it is 'popped' off, -- to become a new chunk of the resulting lazy Text. All this is -- hidden from the user of the Builder. data Builder :: * -- | The class of types that can be rendered to a Builder. class Buildable p build :: Buildable p => p -> Builder -- | Indent already formatted text. -- --
-- >>> fmt $ "This is a list:\n" <> indent 4 (blockListF [1,2,3]) -- This is a list: -- - 1 -- - 2 -- - 3 ---- -- The output will always end with a newline, even when the input -- doesn't. indent :: Int -> Builder -> Builder -- | Add a prefix to the first line, and indent all lines but the first -- one. -- -- The output will always end with a newline, even when the input -- doesn't. indent' :: Int -> Text -> Builder -> Builder -- | Attach a name to anything: -- --
-- >>> fmt $ nameF "clients" $ blockListF ["Alice", "Bob", "Zalgo"] -- clients: -- - Alice -- - Bob -- - Zalgo --nameF :: Builder -> Builder -> Builder -- | A simple comma-separated list formatter. -- --
-- >>> listF ["hello", "world"] -- "[hello, world]" ---- -- For multiline output, use jsonListF. listF :: (Foldable f, Buildable a) => f a -> Builder -- | A version of listF that lets you supply your own building -- function for list elements. -- -- For instance, to format a list of lists you'd have to do this (since -- there's no Buildable instance for lists): -- --
-- >>> listF' listF [[1,2,3],[4,5,6]] -- "[[1, 2, 3], [4, 5, 6]]" --listF' :: (Foldable f) => (a -> Builder) -> f a -> Builder -- | A multiline formatter for lists. -- --
-- >>> fmt $ blockListF [1,2,3] -- - 1 -- - 2 -- - 3 ---- -- It automatically handles multiline list elements: -- --
-- >>> fmt $ blockListF ["hello\nworld", "foo\nbar\nquix"] -- - hello -- world -- -- - foo -- bar -- quix --blockListF :: forall f a. (Foldable f, Buildable a) => f a -> Builder -- | A version of blockListF that lets you supply your own building -- function for list elements. blockListF' :: forall f a. (Foldable f) => (a -> Builder) -> f a -> Builder -- | A JSON-style formatter for lists. -- --
-- >>> fmt $ jsonListF [1,2,3] -- [ -- 1 -- , 2 -- , 3 -- ] ---- -- Like blockListF, it handles multiline elements well: -- --
-- >>> fmt $ jsonListF ["hello\nworld", "foo\nbar\nquix"] -- [ -- hello -- world -- , foo -- bar -- quix -- ] ---- -- (Note that, unlike blockListF, it doesn't add blank lines in -- such cases.) jsonListF :: forall f a. (Foldable f, Buildable a) => f a -> Builder -- | A version of jsonListF that lets you supply your own building -- function for list elements. jsonListF' :: forall f a. (Foldable f) => (a -> Builder) -> f a -> Builder -- | A simple JSON-like map formatter; works for Map, HashMap, etc, as well -- as ordinary lists of pairs. -- --
-- >>> mapF [("a", 1), ("b", 4)]
-- "{a: 1, b: 4}"
--
--
-- For multiline output, use jsonMapF.
mapF :: (IsList t, Item t ~ (k, v), Buildable k, Buildable v) => t -> Builder
-- | A version of mapF that lets you supply your own building
-- function for keys and values.
mapF' :: (IsList t, Item t ~ (k, v)) => (k -> Builder) -> (v -> Builder) -> t -> Builder
-- | A YAML-like map formatter:
--
--
-- >>> fmt $ blockMapF [("Odds", blockListF [1,3]), ("Evens", blockListF [2,4])]
-- Odds:
-- - 1
-- - 3
-- Evens:
-- - 2
-- - 4
--
blockMapF :: (IsList t, Item t ~ (k, v), Buildable k, Buildable v) => t -> Builder
-- | A version of blockMapF that lets you supply your own building
-- function for keys and values.
blockMapF' :: (IsList t, Item t ~ (k, v)) => (k -> Builder) -> (v -> Builder) -> t -> Builder
-- | A JSON-like map formatter (unlike mapF, always multiline):
--
--
-- >>> fmt $ jsonMapF [("Odds", jsonListF [1,3]), ("Evens", jsonListF [2,4])]
-- {
-- Odds:
-- [
-- 1
-- , 3
-- ]
-- , Evens:
-- [
-- 2
-- , 4
-- ]
-- }
--
jsonMapF :: (IsList t, Item t ~ (k, v), Buildable k, Buildable v) => t -> Builder
-- | A version of jsonMapF that lets you supply your own building
-- function for keys and values.
jsonMapF' :: forall t k v. (IsList t, Item t ~ (k, v)) => (k -> Builder) -> (v -> Builder) -> t -> Builder
-- | Format a tuple (of up to 8 elements):
--
-- -- >>> tupleF (1,2,"hi") -- "(1, 2, hi)" ---- -- If any of the elements takes several lines, an alternate format is -- used: -- --
-- >>> fmt $ tupleF ("test","foo\nbar","more test")
-- ( test
-- ,
-- foo
-- bar
-- ,
-- more test )
--
tupleF :: TupleF a => a -> Builder
-- | Format a list like a tuple. (This function is used to define
-- tupleF.)
tupleLikeF :: [Builder] -> Builder
-- | Like build for Maybe, but displays Nothing as
-- <Nothing> instead of an empty string.
--
-- build:
--
-- -- >>> build (Nothing :: Maybe Int) -- "" -- -- >>> build (Just 1 :: Maybe Int) -- "1" ---- -- maybeF: -- --
-- >>> maybeF (Nothing :: Maybe Int) -- "<Nothing>" -- -- >>> maybeF (Just 1 :: Maybe Int) -- "1" --maybeF :: Buildable a => Maybe a -> Builder -- | Format an Either: -- --
-- >>> eitherF (Right 1) -- "<Right: 1>" --eitherF :: (Buildable a, Buildable b) => Either a b -> Builder -- | Take the first N characters: -- --
-- >>> prefixF 3 "hello" -- "hel" --prefixF :: Buildable a => Int -> a -> Builder -- | Take the last N characters: -- --
-- >>> suffixF 3 "hello" -- "llo" --suffixF :: Buildable a => Int -> a -> Builder -- | padLeftF n c pads the string with character c from -- the left side until it becomes n characters wide (and does -- nothing if the string is already that long, or longer): -- --
-- >>> padLeftF 5 '0' 12 -- "00012" -- -- >>> padLeftF 5 '0' 123456 -- "123456" --padLeftF :: Buildable a => Int -> Char -> a -> Builder -- | padRightF n c pads the string with character c from -- the right side until it becomes n characters wide (and does -- nothing if the string is already that long, or longer): -- --
-- >>> padRightF 5 ' ' "foo" -- "foo " -- -- >>> padRightF 5 ' ' "foobar" -- "foobar" --padRightF :: Buildable a => Int -> Char -> a -> Builder -- | padBothF n c pads the string with character c from -- both sides until it becomes n characters wide (and does -- nothing if the string is already that long, or longer): -- --
-- >>> padBothF 5 '=' "foo" -- "=foo=" -- -- >>> padBothF 5 '=' "foobar" -- "foobar" ---- -- When padding can't be distributed equally, the left side is preferred: -- --
-- >>> padBoth 8 '=' "foo" -- "===foo==" --padBothF :: Buildable a => Int -> Char -> a -> Builder -- | Format a number or bytestring as hex: -- --
-- >>> hexF 3635
-- "e33"
--
-- >>> hexF ("\0\50\63\80" :: BS.ByteString)
-- "00323f50"
--
hexF :: FormatAsHex a => a -> Builder
-- | Convert a bytestring to base64:
--
--
-- >>> base64F ("\0\50\63\80" :: BS.ByteString)
-- "ADI/UA=="
--
base64F :: FormatAsBase64 a => a -> Builder
-- | Convert a bytestring to base64url (a variant of base64 which omits
-- / and thus can be used in URLs):
--
--
-- >>> base64UrlF ("\0\50\63\80" :: BS.ByteString)
-- "ADI_UA=="
--
base64UrlF :: FormatAsBase64 a => a -> Builder
-- | Add an ordinal suffix to a number:
--
-- -- >>> ordinalF 15 -- "15th" -- -- >>> ordinalF 22 -- "22nd" --ordinalF :: (Buildable a, Integral a) => a -> Builder -- | Break digits in a number: -- --
-- >>> commaizeF 15830000 -- "15,830,000" --commaizeF :: (Buildable a, Integral a) => a -> Builder -- | Format a number as octal: -- --
-- >>> listF' octF [7,8,9,10] -- "[7, 10, 11, 12]" --octF :: Integral a => a -> Builder -- | Format a number as binary: -- --
-- >>> listF' binF [7,8,9,10] -- "[111, 1000, 1001, 1010]" --binF :: Integral a => a -> Builder -- | Format a number in arbitrary base (up to 36): -- --
-- >>> baseF 3 10000 -- "111201101" -- -- >>> baseF 7 10000 -- "41104" -- -- >>> baseF 36 10000 -- "7ps" --baseF :: Integral a => Int -> a -> Builder -- | Format a floating-point number: -- --
-- >>> floatF 3.1415 -- "3.1415" ---- -- Numbers bigger than 1e21 or smaller than 1e-6 will be displayed using -- scientific notation: -- --
-- >>> listF' floatF [1e-6,9e-7] -- "[0.000001, 9e-7]" -- -- >>> listF' floatF [9e20,1e21] -- "[900000000000000000000, 1e21]" --floatF :: Real a => a -> Builder -- | Format a floating-point number using scientific notation, with given -- amount of precision: -- --
-- >>> listF' (exptF 5) [pi,0.1,10] -- "[3.14159e0, 1.00000e-1, 1.00000e1]" --exptF :: Real a => Int -> a -> Builder -- | Format a floating-point number with given amount of precision. -- -- For small numbers, it uses scientific notation for everything smaller -- than 1e-6: -- --
-- >>> listF' (precF 3) [1e-5,1e-6,1e-7] -- "[0.0000100, 0.00000100, 1.00e-7]" ---- -- For large numbers, it uses scientific notation for everything larger -- than 1eN, where N is the precision: -- --
-- >>> listF' (precF 4) [1e3,5e3,1e4] -- "[1000, 5000, 1.000e4]" --precF :: Real a => Int -> a -> Builder -- | Format a floating-point number without scientific notation: -- --
-- >>> listF' (fixedF 5) [pi,0.1,10] -- "[3.14159, 0.10000, 10.00000]" --fixedF :: Real a => Int -> a -> Builder -- | Display something only if the condition is True (empty string -- otherwise). -- --
-- >>> "Hello!" <> whenF showDetails (", details: "#|foobar|#"")
--
--
-- Note that it can only take a Builder (because otherwise it
-- would be unusable with (#|)-formatted strings which can resolve
-- to any FromBuilder). Thus, use fmt if you need just one
-- value:
--
-- -- >>> "Maybe here's a number: "#|whenF cond (fmt n)|#"" --whenF :: Bool -> Builder -> Builder -- | Display something only if the condition is False (empty string -- otherwise). unlessF :: Bool -> Builder -> Builder -- | Format an arbitrary value without requiring a Buildable -- instance: -- --
-- data Foo = Foo { x :: Bool, y :: [Int] }
-- deriving Generic
--
--
-- -- >>> fmt (genericF (Foo True [1,2,3])) -- Foo: -- x: True -- y: [1, 2, 3] ---- -- It works for non-record constructors too: -- --
-- data Bar = Bar Bool [Int] -- deriving Generic ---- --
-- >>> fmtLn (genericF (Bar True [1,2,3])) -- <Bar: True, [1, 2, 3]> ---- -- Any fields inside the type must either be Buildable or one of -- the following types: -- -- -- -- The exact format of genericF might change in future versions, -- so don't rely on it. It's merely a convenience function. genericF :: (Generic a, GBuildable (Rep a)) => a -> Builder instance (Data.Text.Buildable.Buildable a1, Data.Text.Buildable.Buildable a2) => Fmt.Internal.TupleF (a1, a2) instance (Data.Text.Buildable.Buildable a1, Data.Text.Buildable.Buildable a2, Data.Text.Buildable.Buildable a3) => Fmt.Internal.TupleF (a1, a2, a3) instance (Data.Text.Buildable.Buildable a1, Data.Text.Buildable.Buildable a2, Data.Text.Buildable.Buildable a3, Data.Text.Buildable.Buildable a4) => Fmt.Internal.TupleF (a1, a2, a3, a4) instance (Data.Text.Buildable.Buildable a1, Data.Text.Buildable.Buildable a2, Data.Text.Buildable.Buildable a3, Data.Text.Buildable.Buildable a4, Data.Text.Buildable.Buildable a5) => Fmt.Internal.TupleF (a1, a2, a3, a4, a5) instance (Data.Text.Buildable.Buildable a1, Data.Text.Buildable.Buildable a2, Data.Text.Buildable.Buildable a3, Data.Text.Buildable.Buildable a4, Data.Text.Buildable.Buildable a5, Data.Text.Buildable.Buildable a6) => Fmt.Internal.TupleF (a1, a2, a3, a4, a5, a6) instance (Data.Text.Buildable.Buildable a1, Data.Text.Buildable.Buildable a2, Data.Text.Buildable.Buildable a3, Data.Text.Buildable.Buildable a4, Data.Text.Buildable.Buildable a5, Data.Text.Buildable.Buildable a6, Data.Text.Buildable.Buildable a7) => Fmt.Internal.TupleF (a1, a2, a3, a4, a5, a6, a7) instance (Data.Text.Buildable.Buildable a1, Data.Text.Buildable.Buildable a2, Data.Text.Buildable.Buildable a3, Data.Text.Buildable.Buildable a4, Data.Text.Buildable.Buildable a5, Data.Text.Buildable.Buildable a6, Data.Text.Buildable.Buildable a7, Data.Text.Buildable.Buildable a8) => Fmt.Internal.TupleF (a1, a2, a3, a4, a5, a6, a7, a8) instance Fmt.Internal.GBuildable a => Fmt.Internal.GBuildable (GHC.Generics.M1 GHC.Generics.D d a) instance (Fmt.Internal.GetFields a, GHC.Generics.Constructor c) => Fmt.Internal.GBuildable (GHC.Generics.M1 GHC.Generics.C c a) instance Fmt.Internal.Buildable' c => Fmt.Internal.GBuildable (GHC.Generics.K1 i c) instance (Fmt.Internal.GBuildable a, Fmt.Internal.GBuildable b) => Fmt.Internal.GBuildable (a GHC.Generics.:+: b) instance (Fmt.Internal.GetFields a, Fmt.Internal.GetFields b) => Fmt.Internal.GetFields (a GHC.Generics.:*: b) instance (Fmt.Internal.GBuildable a, GHC.Generics.Selector c) => Fmt.Internal.GetFields (GHC.Generics.M1 GHC.Generics.S c a) instance Fmt.Internal.GBuildable a => Fmt.Internal.GetFields (GHC.Generics.M1 GHC.Generics.D c a) instance Fmt.Internal.GBuildable a => Fmt.Internal.GetFields (GHC.Generics.M1 GHC.Generics.C c a) instance Fmt.Internal.GetFields GHC.Generics.U1 instance Fmt.Internal.Buildable' () instance (Fmt.Internal.Buildable' a1, Fmt.Internal.Buildable' a2) => Fmt.Internal.Buildable' (a1, a2) instance (Fmt.Internal.Buildable' a1, Fmt.Internal.Buildable' a2, Fmt.Internal.Buildable' a3) => Fmt.Internal.Buildable' (a1, a2, a3) instance (Fmt.Internal.Buildable' a1, Fmt.Internal.Buildable' a2, Fmt.Internal.Buildable' a3, Fmt.Internal.Buildable' a4) => Fmt.Internal.Buildable' (a1, a2, a3, a4) instance (Fmt.Internal.Buildable' a1, Fmt.Internal.Buildable' a2, Fmt.Internal.Buildable' a3, Fmt.Internal.Buildable' a4, Fmt.Internal.Buildable' a5) => Fmt.Internal.Buildable' (a1, a2, a3, a4, a5) instance (Fmt.Internal.Buildable' a1, Fmt.Internal.Buildable' a2, Fmt.Internal.Buildable' a3, Fmt.Internal.Buildable' a4, Fmt.Internal.Buildable' a5, Fmt.Internal.Buildable' a6) => Fmt.Internal.Buildable' (a1, a2, a3, a4, a5, a6) instance (Fmt.Internal.Buildable' a1, Fmt.Internal.Buildable' a2, Fmt.Internal.Buildable' a3, Fmt.Internal.Buildable' a4, Fmt.Internal.Buildable' a5, Fmt.Internal.Buildable' a6, Fmt.Internal.Buildable' a7) => Fmt.Internal.Buildable' (a1, a2, a3, a4, a5, a6, a7) instance (Fmt.Internal.Buildable' a1, Fmt.Internal.Buildable' a2, Fmt.Internal.Buildable' a3, Fmt.Internal.Buildable' a4, Fmt.Internal.Buildable' a5, Fmt.Internal.Buildable' a6, Fmt.Internal.Buildable' a7, Fmt.Internal.Buildable' a8) => Fmt.Internal.Buildable' (a1, a2, a3, a4, a5, a6, a7, a8) instance Fmt.Internal.Buildable' [GHC.Types.Char] instance Fmt.Internal.Buildable' a => Fmt.Internal.Buildable' [a] instance Fmt.Internal.Buildable' a => Fmt.Internal.Buildable' (Data.List.NonEmpty.NonEmpty a) instance Fmt.Internal.Buildable' a => Fmt.Internal.Buildable' (Data.Sequence.Seq a) instance (Fmt.Internal.Buildable' k, Fmt.Internal.Buildable' v) => Fmt.Internal.Buildable' (Data.Map.Base.Map k v) instance Fmt.Internal.Buildable' v => Fmt.Internal.Buildable' (Data.Set.Base.Set v) instance Fmt.Internal.Buildable' v => Fmt.Internal.Buildable' (Data.IntMap.Base.IntMap v) instance Fmt.Internal.Buildable' Data.IntSet.Base.IntSet instance Fmt.Internal.Buildable' a => Fmt.Internal.Buildable' (GHC.Base.Maybe a) instance (Fmt.Internal.Buildable' a, Fmt.Internal.Buildable' b) => Fmt.Internal.Buildable' (Data.Either.Either a b) instance Fmt.Internal.Buildable' (a -> b) instance Data.Text.Buildable.Buildable a => Fmt.Internal.Buildable' a