-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Composable, streaming, and efficient left folds -- -- This library provides strict left folds that stream in constant -- memory, and you can combine folds using Applicative style to -- derive new folds. Derived folds still traverse the container just once -- and are often as efficient as hand-written folds. @package foldl @version 1.4.2 -- | This module provides efficient and streaming left folds that you can -- combine using Applicative style. -- -- Import this module qualified to avoid clashing with the Prelude: -- --
-- >>> import qualified Control.Foldl as L ---- -- Use fold to apply a Fold to a list: -- --
-- >>> L.fold L.sum [1..100] -- 5050 ---- -- Folds are Applicatives, so you can combine them using -- Applicative combinators: -- --
-- >>> import Control.Applicative -- -- >>> let average = (/) <$> L.sum <*> L.genericLength ---- -- Taking the sum, the sum of squares, ..., upto the sum of x^5 -- --
-- >>> import Data.Traversable -- -- >>> let powerSums = sequenceA [L.premap (^n) L.sum | n <- [1..5]] -- -- >>> L.fold powerSums [1..10] -- [55,385,3025,25333,220825] ---- -- These combined folds will still traverse the list only once, streaming -- efficiently over the list in constant space without space leaks: -- --
-- >>> L.fold average [1..10000000] -- 5000000.5 -- -- >>> L.fold ((,) <$> L.minimum <*> L.maximum) [1..10000000] -- (Just 1,Just 10000000) ---- -- You might want to try enabling the -flate-dmd-anal flag when -- compiling executables that use this library to further improve -- performance. module Control.Foldl -- | Efficient representation of a left fold that preserves the fold's step -- function, initial accumulator, and extraction function -- -- This allows the Applicative instance to assemble derived folds -- that traverse the container only once -- -- A 'Fold a b' processes elements of type a and results in -- a value of type b. data Fold a b -- | Fold step initial extract Fold :: (x -> a -> x) -> x -> (x -> b) -> Fold a b -- | Like Fold, but monadic. -- -- A 'FoldM m a b' processes elements of type a and results -- in a monadic value of type m b. data FoldM m a b -- | FoldM step initial extract FoldM :: (x -> a -> m x) -> (m x) -> (x -> m b) -> FoldM m a b -- | Apply a strict left Fold to a Foldable container fold :: Foldable f => Fold a b -> f a -> b -- | Like fold, but monadic foldM :: (Foldable f, Monad m) => FoldM m a b -> f a -> m b -- | Convert a strict left Fold into a scan scan :: Fold a b -> [a] -> [b] -- | Convert a Fold into a prescan for any Traversable type -- -- "Prescan" means that the last element of the scan is not included prescan :: Traversable t => Fold a b -> t a -> t b -- | Convert a Fold into a postscan for any Traversable type -- -- "Postscan" means that the first element of the scan is not included postscan :: Traversable t => Fold a b -> t a -> t b -- | Fold all values within a container using mappend and -- mempty mconcat :: Monoid a => Fold a a -- | Convert a "foldMap" to a Fold foldMap :: Monoid w => (a -> w) -> (w -> b) -> Fold a b -- | Get the first element of a container or return Nothing if the -- container is empty head :: Fold a (Maybe a) -- | Get the last element of a container or return Nothing if the -- container is empty last :: Fold a (Maybe a) -- | Get the last element of a container or return a default value if the -- container is empty lastDef :: a -> Fold a a -- | Return the last N elements lastN :: Int -> Fold a [a] -- | Returns True if the container is empty, False otherwise null :: Fold a Bool -- | Return the length of the container length :: Fold a Int -- | Returns True if all elements are True, False -- otherwise and :: Fold Bool Bool -- | Returns True if any element is True, False -- otherwise or :: Fold Bool Bool -- | (all predicate) returns True if all elements satisfy -- the predicate, False otherwise all :: (a -> Bool) -> Fold a Bool -- | (any predicate) returns True if any element satisfies -- the predicate, False otherwise any :: (a -> Bool) -> Fold a Bool -- | Computes the sum of all elements sum :: Num a => Fold a a -- | Computes the product of all elements product :: Num a => Fold a a -- | Compute a numerically stable arithmetic mean of all elements mean :: Fractional a => Fold a a -- | Compute a numerically stable (population) variance over all elements variance :: Fractional a => Fold a a -- | Compute a numerically stable (population) standard deviation over all -- elements std :: Floating a => Fold a a -- | Computes the maximum element maximum :: Ord a => Fold a (Maybe a) -- | Computes the maximum element with respect to the given comparison -- function maximumBy :: (a -> a -> Ordering) -> Fold a (Maybe a) -- | Computes the minimum element minimum :: Ord a => Fold a (Maybe a) -- | Computes the minimum element with respect to the given comparison -- function minimumBy :: (a -> a -> Ordering) -> Fold a (Maybe a) -- | (elem a) returns True if the container has an element -- equal to a, False otherwise elem :: Eq a => a -> Fold a Bool -- | (notElem a) returns False if the container has an -- element equal to a, True otherwise notElem :: Eq a => a -> Fold a Bool -- | (find predicate) returns the first element that satisfies the -- predicate or Nothing if no element satisfies the predicate find :: (a -> Bool) -> Fold a (Maybe a) -- | (index n) returns the nth element of the container, -- or Nothing if the container has an insufficient number of -- elements index :: Int -> Fold a (Maybe a) -- | (lookup a) returns the element paired with the first matching -- item, or Nothing if none matches lookup :: Eq a => a -> Fold (a, b) (Maybe b) -- | (elemIndex a) returns the index of the first element that -- equals a, or Nothing if no element matches elemIndex :: Eq a => a -> Fold a (Maybe Int) -- | (findIndex predicate) returns the index of the first element -- that satisfies the predicate, or Nothing if no element -- satisfies the predicate findIndex :: (a -> Bool) -> Fold a (Maybe Int) -- | Pick a random element, using reservoir sampling random :: FoldM IO a (Maybe a) -- | Pick several random elements, using reservoir sampling randomN :: Vector v a => Int -> FoldM IO a (Maybe (v a)) -- | Converts an effectful function to a fold. Specialized version of -- sink. mapM_ :: Monad m => (a -> m ()) -> FoldM m a () -- | Converts an effectful function to a fold -- --
-- sink (f <> g) = sink f <> sink g -- if `(<>)` is commutative -- sink mempty = mempty --sink :: (Monoid w, Monad m) => (a -> m w) -> FoldM m a w -- | Like length, except with a more general Num return value genericLength :: Num b => Fold a b -- | Like index, except with a more general Integral argument genericIndex :: Integral i => i -> Fold a (Maybe a) -- | Fold all values into a list list :: Fold a [a] -- | Fold all values into a list, in reverse order revList :: Fold a [a] -- | O(n log n). Fold values into a list with duplicates removed, -- while preserving their first occurrences nub :: Ord a => Fold a [a] -- | O(n^2). Fold values into a list with duplicates removed, while -- preserving their first occurrences eqNub :: Eq a => Fold a [a] -- | Fold values into a set set :: Ord a => Fold a (Set a) -- | Fold values into a hash-set hashSet :: (Eq a, Hashable a) => Fold a (HashSet a) -- | Fold pairs into a map. map :: Ord a => Fold (a, b) (Map a b) -- | Fold pairs into a hash-map. hashMap :: (Eq a, Hashable a) => Fold (a, b) (HashMap a b) -- | Fold all values into a vector vector :: Vector v a => Fold a (v a) -- | Fold all values into a vector -- -- This is more efficient than vector but is impure vectorM :: (PrimMonad m, Vector v a) => FoldM m a (v a) -- | Upgrade a fold to accept the Fold type purely :: (forall x. (x -> a -> x) -> x -> (x -> b) -> r) -> Fold a b -> r -- | Upgrade a more traditional fold to accept the Fold type purely_ :: (forall x. (x -> a -> x) -> x -> x) -> Fold a b -> b -- | Upgrade a monadic fold to accept the FoldM type impurely :: (forall x. (x -> a -> m x) -> m x -> (x -> m b) -> r) -> FoldM m a b -> r -- | Upgrade a more traditional monadic fold to accept the FoldM -- type impurely_ :: Monad m => (forall x. (x -> a -> m x) -> m x -> m x) -> FoldM m a b -> m b -- | Generalize a Fold to a FoldM -- --
-- generalize (pure r) = pure r -- -- generalize (f <*> x) = generalize f <*> generalize x --generalize :: Monad m => Fold a b -> FoldM m a b -- | Simplify a pure FoldM to a Fold -- --
-- simplify (pure r) = pure r -- -- simplify (f <*> x) = simplify f <*> simplify x --simplify :: FoldM Identity a b -> Fold a b -- | Shift a FoldM from one monad to another with a morphism such as -- lift or liftIO; the effect is the same as -- hoist. hoists :: (forall x. m x -> n x) -> FoldM m a b -> FoldM n a b -- | Allows to continue feeding a FoldM even after passing it to a -- function that closes it. -- -- For pure Folds, this is provided by the Comonad -- instance. duplicateM :: Applicative m => FoldM m a b -> FoldM m a (FoldM m a b) -- | _Fold1 step returns a new Fold using just a step -- function that has the same type for the accumulator and the element. -- The result type is the accumulator type wrapped in Maybe. The -- initial accumulator is retrieved from the Foldable, the result -- is None for empty containers. _Fold1 :: (a -> a -> a) -> Fold a (Maybe a) -- | (premap f folder) returns a new Fold where f is -- applied at each step -- --
-- fold (premap f folder) list = fold folder (map f list) ---- --
-- >>> fold (premap Sum mconcat) [1..10]
-- Sum {getSum = 55}
--
--
--
-- >>> fold mconcat (map Sum [1..10])
-- Sum {getSum = 55}
--
--
-- -- premap id = id -- -- premap (f . g) = premap g . premap f ---- --
-- premap k (pure r) = pure r -- -- premap k (f <*> x) = premap k f <*> premap k x --premap :: (a -> b) -> Fold b r -> Fold a r -- | (premapM f folder) returns a new FoldM where f is -- applied to each input element -- --
-- premapM return = id -- -- premapM (f <=< g) = premap g . premap f ---- --
-- premapM k (pure r) = pure r -- -- premapM k (f <*> x) = premapM k f <*> premapM k x --premapM :: Monad m => (a -> m b) -> FoldM m b r -> FoldM m a r -- | (prefilter f folder) returns a new Fold where the -- folder's input is used only when the input satisfies a predicate f -- -- This can also be done with handles (handles (filtered -- f)) but prefilter does not need you to depend on a lens -- library. -- --
-- fold (prefilter p folder) list = fold folder (filter p list) ---- --
-- >>> fold (prefilter (>5) Control.Foldl.sum) [1..10] -- 40 ---- --
-- >>> fold Control.Foldl.sum (filter (>5) [1..10]) -- 40 --prefilter :: (a -> Bool) -> Fold a r -> Fold a r -- | (prefilterM f folder) returns a new Fold where the -- folder's input is used only when the input satisfies a monadic -- predicate f. -- --
-- foldM (prefilterM p folder) list = foldM folder (filter p list) --prefilterM :: (Monad m) => (a -> m Bool) -> FoldM m a r -> FoldM m a r -- | A handler for the upstream input of a Fold -- -- Any lens, traversal, or prism will type-check as a Handler type Handler a b = forall x. (b -> Const (Dual (Endo x)) b) -> a -> Const (Dual (Endo x)) a -- | (handles t folder) transforms the input of a Fold -- using a lens, traversal, or prism: -- --
-- handles _1 :: Fold a r -> Fold (a, b) r -- handles _Left :: Fold a r -> Fold (Either a b) r -- handles traverse :: Traversable t => Fold a r -> Fold (t a) r -- handles folded :: Foldable t => Fold a r -> Fold (t a) r ---- --
-- >>> fold (handles traverse sum) [[1..5],[6..10]] -- 55 ---- --
-- >>> fold (handles (traverse.traverse) sum) [[Nothing, Just 2, Just 7],[Just 13, Nothing, Just 20]] -- 42 ---- --
-- >>> fold (handles (filtered even) sum) [1..10] -- 30 ---- --
-- >>> fold (handles _2 mconcat) [(1,"Hello "),(2,"World"),(3,"!")] -- "Hello World!" ---- --
-- handles id = id -- -- handles (f . g) = handles f . handles g ---- --
-- handles t (pure r) = pure r -- -- handles t (f <*> x) = handles t f <*> handles t x --handles :: Handler a b -> Fold b r -> Fold a r -- | (foldOver f folder xs) folds all values from a Lens, -- Traversal, Prism or Fold with the given folder -- --
-- >>> foldOver (_Just . both) L.sum (Just (2, 3)) -- 5 ---- --
-- >>> foldOver (_Just . both) L.sum Nothing -- 0 ---- --
-- L.foldOver f folder xs == L.fold folder (xs^..f) ---- --
-- L.foldOver (folded.f) folder == L.fold (handles f folder) ---- --
-- L.foldOver folded == L.fold --foldOver :: Handler s a -> Fold a b -> s -> b -- |
-- instance Monad m => Monoid (EndoM m a) where -- mempty = EndoM return -- mappend (EndoM f) (EndoM g) = EndoM (f <=< g) --newtype EndoM m a EndoM :: a -> m a -> EndoM m a [appEndoM] :: EndoM m a -> a -> m a -- | A Handler for the upstream input of FoldM -- -- Any lens, traversal, or prism will type-check as a HandlerM type HandlerM m a b = forall x. (b -> Const (Dual (EndoM m x)) b) -> a -> Const (Dual (EndoM m x)) a -- | (handlesM t folder) transforms the input of a FoldM -- using a lens, traversal, or prism: -- --
-- handlesM _1 :: FoldM m a r -> FoldM (a, b) r -- handlesM _Left :: FoldM m a r -> FoldM (Either a b) r -- handlesM traverse :: Traversable t => FoldM m a r -> FoldM m (t a) r -- handlesM folded :: Foldable t => FoldM m a r -> FoldM m (t a) r ---- -- handlesM obeys these laws: -- --
-- handlesM id = id -- -- handlesM (f . g) = handlesM f . handlesM g ---- --
-- handlesM t (pure r) = pure r -- -- handlesM t (f <*> x) = handlesM t f <*> handlesM t x --handlesM :: HandlerM m a b -> FoldM m b r -> FoldM m a r -- | (foldOverM f folder xs) folds all values from a Lens, -- Traversal, Prism or Fold monadically with the given folder -- --
-- L.foldOverM (folded.f) folder == L.foldM (handlesM f folder) ---- --
-- L.foldOverM folded == L.foldM --foldOverM :: Monad m => HandlerM m s a -> FoldM m a b -> s -> m b -- |
-- folded :: Foldable t => Fold (t a) a -- -- handles folded :: Foldable t => Fold a r -> Fold (t a) r --folded :: (Contravariant f, Applicative f, Foldable t) => (a -> f a) -> (t a -> f (t a)) -- |
-- >>> fold (handles (filtered even) sum) [1..10] -- 30 ---- --
-- >>> foldM (handlesM (filtered even) (mapM_ print)) [1..10] -- 2 -- 4 -- 6 -- 8 -- 10 --filtered :: Monoid m => (a -> Bool) -> (a -> m) -> a -> m -- | Perform a Fold while grouping the data according to a specified -- group projection function. Returns the folded result grouped as a map -- keyed by the group. groupBy :: Ord g => (a -> g) -> Fold a r -> Fold a (Map g r) -- | RealWorld is deeply magical. It is primitive, but it -- is not unlifted (hence ptrArg). We never manipulate -- values of type RealWorld; it's only used in the type system, -- to parameterise State#. data RealWorld -- | Class of monads which can perform primitive state-transformer actions class Monad m => PrimMonad (m :: * -> *) -- | Data structures that can be folded. -- -- For example, given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Foldable Tree where -- foldMap f Empty = mempty -- foldMap f (Leaf x) = f x -- foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r ---- -- This is suitable even for abstract types, as the monoid is assumed to -- satisfy the monoid laws. Alternatively, one could define -- foldr: -- --
-- instance Foldable Tree where -- foldr f z Empty = z -- foldr f z (Leaf x) = f x z -- foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l ---- -- Foldable instances are expected to satisfy the following -- laws: -- --
-- foldr f z t = appEndo (foldMap (Endo . f) t ) z ---- --
-- foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z ---- --
-- fold = foldMap id ---- --
-- length = getSum . foldMap (Sum . const 1) ---- -- sum, product, maximum, and minimum -- should all be essentially equivalent to foldMap forms, such -- as -- --
-- sum = getSum . foldMap Sum ---- -- but may be less defined. -- -- If the type is also a Functor instance, it should satisfy -- --
-- foldMap f = fold . fmap f ---- -- which implies that -- --
-- foldMap f . fmap g = foldMap (f . g) --class Foldable (t :: * -> *) -- | Mutable v s a is the mutable version of the pure vector type -- v a with the state token s -- | Class of immutable vectors. Every immutable vector is associated with -- its mutable version through the Mutable type family. Methods of -- this class should not be used directly. Instead, -- Data.Vector.Generic and other Data.Vector modules provide safe -- and fusible wrappers. -- -- Minimum complete implementation: -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Foldable Tree where -- foldMap f Empty = mempty -- foldMap f (Leaf x) = f x -- foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r ---- -- This is suitable even for abstract types, as the monoid is assumed to -- satisfy the monoid laws. Alternatively, one could define -- foldr: -- --
-- instance Foldable Tree where -- foldr f z Empty = z -- foldr f z (Leaf x) = f x z -- foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l ---- -- Foldable instances are expected to satisfy the following -- laws: -- --
-- foldr f z t = appEndo (foldMap (Endo . f) t ) z ---- --
-- foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z ---- --
-- fold = foldMap id ---- --
-- length = getSum . foldMap (Sum . const 1) ---- -- sum, product, maximum, and minimum -- should all be essentially equivalent to foldMap forms, such -- as -- --
-- sum = getSum . foldMap Sum ---- -- but may be less defined. -- -- If the type is also a Functor instance, it should satisfy -- --
-- foldMap f = fold . fmap f ---- -- which implies that -- --
-- foldMap f . fmap g = foldMap (f . g) --class Foldable (t :: * -> *) -- | Like Fold, but monadic. -- -- A 'FoldM m a b' processes elements of type a and results -- in a monadic value of type m b. data FoldM m a b -- | Efficient representation of a left fold that preserves the fold's step -- function, initial accumulator, and extraction function -- -- This allows the Applicative instance to assemble derived folds -- that traverse the container only once -- -- A 'Fold a b' processes elements of type a and results in -- a value of type b. data Fold a b -- | A space-efficient representation of a Word8 vector, supporting -- many efficient operations. -- -- A ByteString contains 8-bit bytes, or by using the operations -- from Data.ByteString.Char8 it can be interpreted as containing -- 8-bit characters. data ByteString -- | 8-bit unsigned integer type data Word8 -- | Folds for text streams module Control.Foldl.Text -- | Apply a strict left Fold to lazy text fold :: Fold Text a -> Text -> a -- | Apply a strict monadic left FoldM to lazy text foldM :: Monad m => FoldM m Text a -> Text -> m a -- | Get the first character of a text stream or return Nothing if -- the stream is empty head :: Fold Text (Maybe Char) -- | Get the last character of a text stream or return Nothing if -- the text stream is empty last :: Fold Text (Maybe Char) -- | Returns True if the text stream is empty, False -- otherwise null :: Fold Text Bool -- | Return the length of the text stream in characters length :: Num n => Fold Text n -- | (any predicate) returns True if any character -- satisfies the predicate, False otherwise any :: (Char -> Bool) -> Fold Text Bool -- | (all predicate) returns True if all characters satisfy -- the predicate, False otherwise all :: (Char -> Bool) -> Fold Text Bool -- | Computes the maximum character maximum :: Fold Text (Maybe Char) -- | Computes the minimum character minimum :: Fold Text (Maybe Char) -- | (elem c) returns True if the text stream has a -- character equal to c, False otherwise elem :: Char -> Fold Text Bool -- | (notElem c) returns False if the text stream has a -- character equal to c, True otherwise notElem :: Char -> Fold Text Bool -- | (find predicate) returns the first character that satisfies -- the predicate or Nothing if no character satisfies the -- predicate find :: (Char -> Bool) -> Fold Text (Maybe Char) -- | (index n) returns the nth character of the text -- stream, or Nothing if the stream has an insufficient number of -- characters index :: Integral n => n -> Fold Text (Maybe Char) -- | (elemIndex c) returns the index of the first character that -- equals c, or Nothing if no character matches elemIndex :: Num n => Char -> Fold Text (Maybe n) -- | (findIndex predicate) returns the index of the first -- character that satisfies the predicate, or Nothing if no -- character satisfies the predicate findIndex :: Num n => (Char -> Bool) -> Fold Text (Maybe n) -- | (count c) returns the number of times c appears count :: Num n => Char -> Fold Text n -- | Combine all the strict Text chunks to build a lazy Text lazy :: Fold Text Text -- | Data structures that can be folded. -- -- For example, given a data type -- --
-- data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) ---- -- a suitable instance would be -- --
-- instance Foldable Tree where -- foldMap f Empty = mempty -- foldMap f (Leaf x) = f x -- foldMap f (Node l k r) = foldMap f l `mappend` f k `mappend` foldMap f r ---- -- This is suitable even for abstract types, as the monoid is assumed to -- satisfy the monoid laws. Alternatively, one could define -- foldr: -- --
-- instance Foldable Tree where -- foldr f z Empty = z -- foldr f z (Leaf x) = f x z -- foldr f z (Node l k r) = foldr f (f k (foldr f z r)) l ---- -- Foldable instances are expected to satisfy the following -- laws: -- --
-- foldr f z t = appEndo (foldMap (Endo . f) t ) z ---- --
-- foldl f z t = appEndo (getDual (foldMap (Dual . Endo . flip f) t)) z ---- --
-- fold = foldMap id ---- --
-- length = getSum . foldMap (Sum . const 1) ---- -- sum, product, maximum, and minimum -- should all be essentially equivalent to foldMap forms, such -- as -- --
-- sum = getSum . foldMap Sum ---- -- but may be less defined. -- -- If the type is also a Functor instance, it should satisfy -- --
-- foldMap f = fold . fmap f ---- -- which implies that -- --
-- foldMap f . fmap g = foldMap (f . g) --class Foldable (t :: * -> *) -- | Like Fold, but monadic. -- -- A 'FoldM m a b' processes elements of type a and results -- in a monadic value of type m b. data FoldM m a b -- | Efficient representation of a left fold that preserves the fold's step -- function, initial accumulator, and extraction function -- -- This allows the Applicative instance to assemble derived folds -- that traverse the container only once -- -- A 'Fold a b' processes elements of type a and results in -- a value of type b. data Fold a b -- | A space efficient, packed, unboxed Unicode text type. data Text -- | This module provides efficient and streaming left map-with-accumulator -- that you can combine using Applicative style. -- -- Import this module qualified to avoid clashing with the Prelude: -- --
-- >>> import qualified Control.Scanl as SL ---- -- Use scan to apply a Fold to a list: module Control.Scanl -- | Efficient representation of a left map-with-accumulator that preserves -- the scan's step function and initial accumulator. -- -- This allows the Applicative instance to assemble derived scans -- that traverse the container only once -- -- A 'Scan a b' processes elements of type a replacing each -- with a value of type b. data Scan a b -- | Scan step initial Scan :: (a -> State x b) -> x -> Scan a b -- | Like Scan, but monadic. -- -- A 'ScanM m a b' processes elements of type a and results -- in a monadic value of type m b. data ScanM m a b -- | ScanM step initial extract ScanM :: (a -> StateT x m b) -> (m x) -> ScanM m a b -- | Apply a strict left Scan to a Traversable container scan :: Traversable t => Scan a b -> t a -> t b -- | Like scan but monadic scanM :: (Traversable t, Monad m) => ScanM m a b -> t a -> m (t b) -- | Convert a Fold into a prescan -- -- "Prescan" means that the last element of the scan is not included prescan :: Fold a b -> Scan a b -- | Convert a Fold into a postscan -- -- "Postscan" means that the first element of the scan is not included postscan :: Fold a b -> Scan a b -- | Upgrade a scan to accept the Scan type purely :: (forall x. (a -> State x b) -> x -> r) -> Scan a b -> r -- | Upgrade a more traditional scan to accept the Scan type purely_ :: (forall x. (x -> a -> (x, b)) -> x -> r) -> Scan a b -> r -- | Upgrade a monadic scan to accept the ScanM type impurely :: (forall x. (a -> StateT x m b) -> m x -> r) -> ScanM m a b -> r -- | Upgrade a more traditional monadic scan to accept the ScanM -- type impurely_ :: Monad m => (forall x. (x -> a -> m (x, b)) -> m x -> r) -> ScanM m a b -> r -- | Generalize a Scan to a ScanM -- --
-- generalize (pure r) = pure r -- -- generalize (f <*> x) = generalize f <*> generalize x --generalize :: Monad m => Scan a b -> ScanM m a b -- | Simplify a pure ScanM to a Scan -- --
-- simplify (pure r) = pure r -- -- simplify (f <*> x) = simplify f <*> simplify x --simplify :: ScanM Identity a b -> Scan a b -- | Shift a ScanM from one monad to another with a morphism such as -- lift or liftIO; the effect is the same as -- hoist. hoists :: (forall x. m x -> n x) -> ScanM m a b -> ScanM n a b arrM :: Monad m => (b -> m c) -> ScanM m b c -- | (premap f scaner) returns a new Scan where f is -- applied at each step -- --
-- scan (premap f scaner) list = scan scaner (map f list) ---- --
-- premap id = id -- -- premap (f . g) = premap g . premap f ---- --
-- premap k (pure r) = pure r -- -- premap k (f <*> x) = premap k f <*> premap k x --premap :: (a -> b) -> Scan b r -> Scan a r -- | (premapM f scaner) returns a new ScanM where f is -- applied to each input element -- --
-- premapM return = id -- -- premapM (f <=< g) = premap g . premap f ---- --
-- premapM k (pure r) = pure r -- -- premapM k (f <*> x) = premapM k f <*> premapM k x --premapM :: Monad m => (a -> m b) -> ScanM m b r -> ScanM m a r instance GHC.Base.Functor m => GHC.Base.Functor (Control.Scanl.ScanM m a) instance GHC.Base.Applicative m => GHC.Base.Applicative (Control.Scanl.ScanM m a) instance GHC.Base.Functor m => Data.Profunctor.Unsafe.Profunctor (Control.Scanl.ScanM m) instance GHC.Base.Monad m => Control.Category.Category (Control.Scanl.ScanM m) instance GHC.Base.Monad m => Control.Arrow.Arrow (Control.Scanl.ScanM m) instance (GHC.Base.Monad m, GHC.Base.Semigroup b) => GHC.Base.Semigroup (Control.Scanl.ScanM m a b) instance (GHC.Base.Monad m, GHC.Base.Monoid b) => GHC.Base.Monoid (Control.Scanl.ScanM m a b) instance (GHC.Base.Monad m, GHC.Num.Num b) => GHC.Num.Num (Control.Scanl.ScanM m a b) instance (GHC.Base.Monad m, GHC.Real.Fractional b) => GHC.Real.Fractional (Control.Scanl.ScanM m a b) instance (GHC.Base.Monad m, GHC.Float.Floating b) => GHC.Float.Floating (Control.Scanl.ScanM m a b) instance GHC.Base.Functor (Control.Scanl.Scan a) instance GHC.Base.Applicative (Control.Scanl.Scan a) instance Data.Profunctor.Unsafe.Profunctor Control.Scanl.Scan instance Control.Category.Category Control.Scanl.Scan instance Control.Arrow.Arrow Control.Scanl.Scan instance GHC.Base.Semigroup b => GHC.Base.Semigroup (Control.Scanl.Scan a b) instance GHC.Base.Monoid b => GHC.Base.Monoid (Control.Scanl.Scan a b) instance GHC.Num.Num b => GHC.Num.Num (Control.Scanl.Scan a b) instance GHC.Real.Fractional b => GHC.Real.Fractional (Control.Scanl.Scan a b) instance GHC.Float.Floating b => GHC.Float.Floating (Control.Scanl.Scan a b)