----------------------------------------------------------------------------- -- | -- Copyright : (C) 2009-2013 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : experimental -- Portability : non-portable -- ---------------------------------------------------------------------------- module Data.Fold ( -- * Scaners and Foldings Scan(..) , Folding(..) -- * Combinators , beneath -- * Scans -- ** Left Scans , L1(..), L1'(..) -- ** Semigroup Scans , M1(..) -- ** Right Scans , R1(..) -- * Foldings -- ** Left Foldings , L(..), L'(..) -- ** Monoidal Foldings , M(..) -- ** Right Foldings , R(..) -- * Homomorphisms -- ** Scan Homomorphisms -- $scanhom -- ** Folding Homomorphisms -- $foldinghom , AsRM(..) , AsL'(..) ) where import Data.Fold.Class import Data.Fold.L import Data.Fold.L' import Data.Fold.L1 import Data.Fold.L1' import Data.Fold.M import Data.Fold.M1 import Data.Fold.R import Data.Fold.R1 import Control.Category ((>>>)) -- * Scan Homomorphisms -- $scanhom -- -- We define @f@ to be a scan homomorphism between @p@ and @q@ when: -- -- @ -- f :: forall a b. p a b -> q a b -- @ -- -- @ -- 'run1' xs (f φ) ≡ 'run1' xs φ -- 'prefix1' xs (f φ) ≡ f ('prefix1' xs φ) -- 'postfix1' (f φ) xs ≡ f ('postfix1' φ xs) -- 'dimap' l r (f φ) ≡ f ('dimap' l r φ) -- 'pure' a ≡ f ('pure' a) -- f φ '<*>' f ψ ≡ f (φ '<*>' ψ) -- 'return' a ≡ f ('return' a) -- f φ '>>=' f . k ≡ f (φ '>>=' k) -- 'interspersing' a (f φ) ≡ f ('interspersing' a φ) -- @ -- -- Furthermore, -- -- @'left'' (f φ)@ and @f ('left'' φ)@ should agree whenever either answer is 'Right' -- @'right'' (f φ)@ and @f ('right'' φ)@ should agree whenver either answer is 'Left' -- -- * Folding Homomorphisms -- $foldinghom -- -- We define @f@ to be a folding homomorphism between @p@ and @q@ when -- @f@ is a scan homomorphism and additionally we can satisfy: -- -- @ -- 'run' xs (f φ) ≡ 'run' xs φ -- 'runOf' l xs (f φ) ≡ 'runOf' l xs φ -- 'prefix' xs (f φ) ≡ f ('prefix' xs φ) -- 'prefixOf' l xs (f φ) ≡ f ('prefixOf' l xs φ) -- 'postfix' (f φ) xs ≡ f ('postfix' φ xs) -- 'postfixOf' l (f φ) xs ≡ f ('postfixOf' l φ xs) -- 'extract' (f φ) ≡ 'extract' φ -- 'filtering' p (f φ) ≡ f ('filtering' p φ) -- @ -- -- Note: A law including 'extend' is explicitly excluded. To work consistenly -- across foldings, use 'prefix' and 'postfix' instead. class AsRM p where -- | 'asM' is a folding homomorphism to a monoidal folding -- -- @ -- 'run' xs ('asM' φ) ≡ 'run' xs φ -- 'prefix' xs ('asM' φ) ≡ 'asM' ('prefix' xs φ) -- 'prefixOf' l xs ('asM' φ) ≡ 'asM' ('prefixOf' l xs φ) -- 'postfix' ('asM' φ) xs ≡ 'asM' ('postfix' φ xs) -- 'postfixOf' l ('asM' φ) xs ≡ 'asM' ('postfixOf' l φ xs) -- 'left'' ('asM' φ) ≡ 'asM' ('left'' φ) -- 'right'' ('asM' φ) ≡ 'asM' ('right'' φ) -- 'dimap' l r ('asM' φ) ≡ 'asM' ('dimap' l r φ) -- 'extract' ('asM' φ) ≡ 'extract' φ -- 'pure' a ≡ 'asM' ('pure' a) -- 'asM' φ '<*>' 'asM' ψ ≡ 'asM' (φ '<*>' ψ) -- 'return' a ≡ 'asM' ('return' a) -- 'asM' φ '>>=' 'asM' . k ≡ 'asM' (φ '>>=' k) -- 'filtering' p ('asM' φ) ≡ 'asM' ('filtering' p φ) -- 'interspersing' a ('asM' φ) ≡ 'asM' ('interspersing' a φ) -- @ asM :: p a b -> M a b asM = asM . asR -- | 'asR' is a folding homomorphism to a right folding -- -- @ -- 'run' xs ('asR' φ) ≡ 'run' xs φ -- 'prefix' xs ('asR' φ) ≡ 'asR' ('prefix' xs φ) -- 'prefixOf' l xs ('asR' φ) ≡ 'asR' ('prefixOf' l xs φ) -- 'postfix' ('asR' φ) xs ≡ 'asR' ('postfix' φ xs) -- 'postfixOf' l ('asR' φ) xs ≡ 'asR' ('postfixOf' l φ xs) -- 'left'' ('asR' φ) ≡ 'asR' ('left'' φ) -- 'right'' ('asR' φ) ≡ 'asR' ('right'' φ) -- 'dimap' l r ('asR' φ) ≡ 'asR' ('dimap' l r φ) -- 'extract' ('asR' φ) ≡ 'extract' φ -- 'pure' a ≡ 'asR' ('pure' a) -- 'asR' φ '<*>' 'asR' ψ ≡ 'asR' (φ '<*>' ψ) -- 'return' a ≡ 'asR' ('return' a) -- 'asR' φ '>>=' 'asR' . k ≡ 'asR' (φ '>>=' k) -- 'filtering' p ('asR' φ) ≡ 'asR' ('filtering' p φ) -- 'interspersing' a ('asR' φ) ≡ 'asR' ('interspersing' a φ) -- @ asR :: p a b -> R a b asR = asR . asM -- | We can convert from a lazy right fold to a monoidal fold instance AsRM R where asM (R k h z) = M (\f -> k (f z)) h (.) id asR = id -- | We can convert from a monoidal fold to a lazy right fold instance AsRM M where asR (M k h m z) = R k (m . h) z asM = id -- | We can convert from a lazy left folding to a right or monoidal fold instance AsRM L where asM (L k h z) = M (\f -> k (f z)) (flip h) (>>>) id asR (L k h z) = R (\f -> k (f z)) (\b g x -> g (h x b)) id -- | We can convert from a strict left folding to a right or monoidal fold instance AsRM L' where asR (L' k h z) = R (\f -> k (f z)) (\b g x -> g $! h x b) id class AsL' p where -- | 'asL'' is a folding homomorphism to a strict left folding -- -- @ -- 'run' xs ('asL'' φ) ≡ 'run' xs φ -- 'prefix' xs ('asL'' φ) ≡ 'asL'' ('prefix' xs φ) -- 'prefixOf' l xs ('asL'' φ) ≡ 'asL'' ('prefixOf' l xs φ) -- 'postfix' ('asL'' φ) xs ≡ 'asL'' ('postfix' φ xs) -- 'postfixOf' l ('asL'' φ) xs ≡ 'asL'' ('postfixOf' l φ xs) -- 'left'' ('asL'' φ) ≡ 'asL'' ('left'' φ) -- 'right'' ('asL'' φ) ≡ 'asL'' ('right'' φ) -- 'dimap' l r ('asL'' φ) ≡ 'asL'' ('dimap' l r φ) -- 'extract' ('asL'' φ) ≡ 'extract' φ -- 'pure' a ≡ 'asL'' ('pure' a) -- 'asL'' φ '<*>' 'asL'' ψ ≡ 'asL'' (φ '<*>' ψ) -- 'return' a ≡ 'asL'' ('return' a) -- 'asL'' φ '>>=' 'asL'' . k ≡ 'asL'' (φ '>>=' k) -- 'filtering' p ('asL'' φ) ≡ 'asL'' ('filtering' p φ) -- 'interspersing' a ('asL'' φ) ≡ 'asL'' ('interspersing' a φ) -- @ asL' :: p a b -> L' a b -- | We can convert a lazy fold to itself instance AsL' L' where asL' = id -- | We can convert from a lazy left folding to a strict left folding. instance AsL' L where asL' (L k h z) = L' (\(Box r) -> k r) (\(Box r) a -> Box (h r a)) (Box z) data Box a = Box a