h&x<      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWX Y Z [ \ ] ^ _ ` a b c d e f g h i j k l m n o p q r s t uvwxyz{|}~            !!!!!!!!!!!!""""#############$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%%%&&&&&&&&&&&&&&'''''''''''''''''''''''''''''''''(((((((((((((((((((((((((((((((((((((((((()))))))))))))))))))*****************************************************************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,,--------------------------------------------------------------------------------------------------------------------------------------------..................... . .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              ////000000000000000000000000000000000000122222222222222222222222222222222222222222222222222222222222222222222222222233444445555566666777888889999::::::::::::::;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<==============>>>>>>>?????@@@ABBBCCCCCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFGGGGGGGGGGGGGGGGGG Safe-Inferred$)*0125689:;<=>?0   Safe-Inferred$)*0125689:;<=>?6O  fortran-srcbinary (bitstring) fortran-srcoctal fortran-srchex, including nonstandard x fortran-srcA Fortran BOZ literal constant.8The prefix defines the characters allowed in the string:B: [01]O: [0-7]Z:  [0-9 a-f A-F] fortran-src%Was the prefix actually postfix i.e. '123'z? This is non-standard syntax, disabled by default in gfortran. Syntactic info. fortran-src-UNSAFE. Parses a BOZ literal constant string.Looks for prefix or postfix. Strips the quotes from the string (single quotes only). fortran-srcPretty print a BOZ constant. Uses prefix style (ignores the postfix field), and z over nonstandard x for hexadecimal. fortran-src7Resolve a BOZ constant as a natural (positive integer).Is actually polymorphic over the output type, but you probably want to resolve to  or Natural usually.We assume the 9 is well-formed, thus don't bother with digit predicates. fortran-src5Resolve a BOZ constant as a two's complement integer.?Note that the value will depend on the size of the output type. fortran-src'Ignores conforming/nonconforming flags. fortran-srcTests prefix & strings match, ignoring conforming/nonconforming flags.   Safe-Inferred&%&)*0125689:;<=>?:]3 fortran-srcKIND=4 (float)4 fortran-srcKIND=8 (double)5 fortran-src!KIND=16 ("quad", rare? extension)6 fortran-src>An exponent is an exponent letter (E, D) and a signed integer.: fortran-srcA Fortran real literal. (Does not include the optional kind parameter.)A real literal is formed of a signed rational significand, and an 6."See F90 ISO spec pg.27 / R412-416.Note that we support signed real literals, even though the F90 spec indicates non-signed real literals are the "default" (signed are only used in a "spare" rule). Our parsers should parse explicit signs as unary operators. There's no harm in supporting signed literals though, especially since the exponent *is* signed.< fortran-src>A string representing a signed decimal. ^ Approximate regex: !-? ( [0-9]+ . [0-9]* | . [0-9]+ )> fortran-src Prettify a : in a Haskell-compatible way.25436987:=<;>?@:=<;69872543>?@ Safe-Inferred$)*0125689:;<=>?;LV fortran-srcRead a string as either a signed integer, or a BOZ constant (positive).Useful in manual lexing.VV Safe-Inferred%)*0125689:;<=>?;WW  Safe-Inferred$)*0125689:;<=>?=Z fortran-srcPretty print to default format  00 12 AB FF': space between each byte, all caps.This format I consider most human readable. I prefer caps to draw attention to this being data instead of text (you don't see that many capital letters packed together in prose).\ fortran-src!Pretty print to "compact" format 0012abff (often output by hashers).XYZ[\XYZ[\  Safe-Inferred()*0125689:;<=>??^ fortran-srcCHARACTER(LEN=x) (where x is a constant integer expression). Value has the given static length._ fortran-srcCHARACTER(LEN=*). F90. Value has assumed length. For a dummy argument, the length is assumed from the actual argument. For a PARAMETER named constant, the length is assumed from the length of the initializing expression.` fortran-srcCHARACTER(LEN=:). F2003. Value has deferred length. Must have the ALLOCATABLE or POINTER attribute.]`_^a]`_^a  Safe-Inferred%)*0125689:;<=>?@Rgg  Safe-Inferred$)*0125689:;<=>?Cl fortran-src-Fortran types which use simple integer kinds.o fortran-src8This we get via the type family, but require singletons.p fortran-srcThis we *should* get via the type family, but again require singletons.r fortran-srcFortran kinds are represented by natural numbers. We use them on both type and term levels.s fortran-srcReify a kind tag to its  equivalent.t fortran-src Upgrade an ; to include a proof of type equality for the equal case."We have no choice but to fake the  with . But assuming & is used correctly, it should be safe. hkjilponmqrst rqslponmhkjit Safe-Inferred()*0125689:;<=>?D,u fortran-srcGet the output type from combining two real values of arbitrary kinds (for example, adding a REAL(4) and a REAL(8)).uvxwyz{|}~yz{|}~vxwu Safe-Inferred()*0125689:;<=>?F? fortran-srcmin k = - (2^(8k-1))* (make sure you negate when reifying etc!) fortran-src max k = 2^(8k-1) - 1 fortran-srcGet the output type from combining two integer values of arbitrary kinds (for example, adding an  INTEGER(1) and an  INTEGER(4)).TODO is this OK?? the k k = k equation at top???( (   Safe-Inferred$)*0125689:;<=>?G. Safe-Inferred$)*0125689:;<=>?G fortran-srcA Fortran scalar type. fortran-src-F77 structure, F90 DDT (non-intrinsic scalar)   Safe-Inferred$)*0125689:;<=>?H fortran-srcA Fortran array type.An array type is defined by a scalar type together with a shape. Safe-Inferred$)*0125689:;<=>?I fortran-src!A Fortran type (scalar or array). Safe-Inferred$)*0125689:;<=>?K fortran-srcWhere relevant/possible, values will be checked for correctness (e.g. existence of over/underflow), and adjusted accordingly. fortran-src+Values will not be checked for correctness. fortran-srcRepresentation behaviour intends to match Fortran's. I guess we'll target gfortran. fortran-src0Use "mathematically ideal" representations e.g.  for all  INTEGER(x) types. This enables us to check for correctness issues such as overflow. Safe-Inferred$)*0125689:;<=>?N fortran-srcConvenience wrapper which multiple Fortran tag-kinded intrinsic types fit.A type ft takes some type fk of kind k, and we are permitted to move the type between the term and type levels using the included singleton instances.1For example, integers are kinded with type level FTInts. So we can define an integer with an existential ("unknown") kind with the type  FTInt FInt. By pattern matching on it, we recover the hidden kind tag (as well as obtaining the value). fortran-src Recover some TYPE(x) 's kind (the x). Safe-Inferred$)*0125689:;<=>?O' Safe-Inferred( )*0125689:;<=>?O Safe-Inferred&)*/0125689:;<=>?T fortran-src.A Fortran integer value, tagged with its kind. fortran-src Low-level - unary operator. Runs an operation over some , and stores it kinded. The user gets to choose how the kind is used: it can be used to wrap the result back into an , or ignored using .=Pattern matches are ordered to match more common ops earlier. fortran-srcRun an operation over some ), with a concrete function for each kind. fortran-srcRun an operation over some . fortran-src#Run an inplace operation over some ,, with a concrete function for each kind. fortran-src#Run an inplace operation over some . fortran-src Low-level  binary operator. Combine two ?U1 Safe-Inferred$)*0125689:;<=>?U Safe-Inferred$)*0125689:;<=>?W fortran-src'Retrieve the boolean value stored by a  LOGICAL(x). fortran-srcConvert a bool to its Fortran machine representation in any numeric type. fortran-src5Consume some Fortran logical stored using an integer.I Safe-Inferred$)*0125689:;<=>?Wo Safe-Inferred$)*0125689:;<=>?Yt fortran-srcRun an operation over some ), with a concrete function for each kind. fortran-srcRun an operation over some . fortran-src#Run an inplace operation over some ,, with a concrete function for each kind. fortran-src#Run an inplace operation over some . fortran-srcCombine two Fortran reals with a binary operation, coercing different kinds. Safe-Inferred$)*0125689:;<=>?Z Safe-Inferred$)*0125689:;<=>?Z   Safe-Inferred$)*0125689:;<=>?[ fortran-srcA Fortran scalar value. fortran-src&Recover a Fortran scalar value's type.J Safe-Inferred$)*0125689:;<=>?\ Safe-Inferred')*0125689:;<=>?] fortran-src?] fortran-src"A Fortran value (scalar or array).K Safe-Inferred$)*0125689:;<=>?^eL Safe-Inferred$)*0125689:;<=>?^ Safe-Inferred$)*0125689:;<=>?_ fortran-srcOperation TODO fortran-src>According to gfortran spec and F2010 spec, same kind required.M Safe-Inferred$)*0125689:;<=>?`\ ]`^_ahkijlpomnmnqrstuvwxyz{|}~ Safe-Inferred%")*0125689:;<=>?qY fortran-src;Represents map of files and replacements that will be done. fortran-srcAs we advance through the [] list, we consider "chunks" as the unit of text written out. A chunk is either: original source text up to a newline character, end of file or  described in 2. a single = that has non-empty replacement string or is deleted. fortran-srcException raised when two  objects overlap () or  points at invalid locations (). fortran-src5Represents the intent to replace content in the file.The content in  will be used in place of what is in the range described. Note that the replacement text can be shorter or larger than the original span, and it can also be multi-line. fortran-srcRepresents a character in the original source text along with any replacement operations applied to the character in place.It expects a character (in case it's empty, Nothing should be used), whether it should be removed, its 1 and a string that should be put in place of it. fortran-src Represents range in source code. fortran-src#Represents location in source code. Note that,  indicates space between characters, i.e the following example:  SourceLocation 0 1indicates position between first and second characters in a file. fortran-src8Parses input string into a list of annotated characters. fortran-srcMarks RChars& in a given range to be removed later. fortran-src>Sets replacement string to be prepended to the given location. fortran-srcSets replacement string to be prepended to the begining of the given range. fortran-src3Applies all deletions and additions and transforms RChars back to a string. fortran-srcIf  is marked as deleted, it'll be evaluated to its replacement string, otherwise original character will be returned. fortran-srcFrom [ ], obtain a (, [RChars ]) where the  is the next  and the [] are the remaining s. fortran-srcSplits [] into s. fortran-srcTransform a list of s into a single string, applying continuation lines when neccessary. fortran-srcThis expands the chunks from the left to right. If the length of what has already been put into the current line exceeds the limit of 72 characters (excluding inline comments starting with ! and implicit comments starting at column 73) then it ends the current line with a continuation, otherwise it simply adds the line as-is. It also calculates if the chunk is inside or outside of a string literal, using that to determine where explicit comments are if any.In either case, we make sure that we are padding implicit comments *from the original source* even if the tail of that line has been moved onto a continuation line. fortran-srcReturn TRUE iff the $ constitutes a character insertion. fortran-srcSets a single  given a list of s. fortran-srcSets a list of s given a list of s. fortran-srcheuristic to wrap line after comma or right parenthesis if applicable fortran-srcMark removal for the input  fortran-src4Append the input character to the replacement string fortran-srcChecks whether two s are not overlapping. fortran-srcChecks whether: ,the start is before the end of the range and1both start and end locations are within the code. fortran-srcApplies s to a string and return it.1Firstly, it transforms the string into a list of s.After that, it validates the  of each .In the end, it splits up s in  s, set the s and evaluates the s.((  Safe-Inferred$)*0125689:;<=>?sn fortran-srcObtain a UTF-8 safe % representation of a file's contents.3Invalid UTF-8 is replaced with the space character. fortran-srcList files in directory, with the directory prepended to each entry. fortran-src$List files in directory recursively.! Safe-Inferred%)*0125689:;<=>?s" Safe-Inferred$)*0125689:;<=>?tJ# Safe-Inferred%)*0125689:;<=>?t$ Safe-Inferred$)*0125689:;<=>?v[ fortran-src.line-offset and filename as given by a pragma. fortran-src(line, column) number taking into account any specified line pragmas. fortran-src?}6 fortran-srcRemove overlapping items from a list of replacements and return a pair of lists containing disjoint items and overlapping items, respectively.Important notes:Replacements that come first in the list will be given precedence over later items. fortran-srcApply a list of  Replacements to the orginal source file.Important notes:9Source locations specified in replacements are 0-indexed.Rewriting applies continuation lines when lines are longer than 72 characters.Example replacements:$Delete the first character in a file  Replacement (SourceRange (SourceLocation 0 0) (SourceLocation 0 1)) "")Prepend "a" to 1 line, 2 column character  Replacement (SourceRange (SourceLocation 0 1) (SourceLocation 0 1)) "a"8Replace a character located in 2 line, 4 column with "a"  Replacement (SourceRange (SourceLocation 1 3) (SourceLocation 1 4)) "a"Replace string starting in 2 line, 4 column and ending in 2 line, 6 column (inclusive) with "a"  Replacement (SourceRange (SourceLocation 1 3) (SourceLocation 1 6)) "a"  fortran-srcUtility function to convert  to  SourceRange fortran-src Given two Span s, returns a  SourceRange that starts at the starting location of the first span, and ends at the starting location of the second span fortran-src Given two Span s, returns a  SourceRange that starts at the ending location of the first span, and ends at the starting location of the second span& Safe-Inferred$)*0125689:;<=>?~ fortran-src [0-9]+ fortran-src[a-z][a-z0-9]+ (case insensitive)' Safe-Inferred$)*0125689:;<=>?o fortran-src7A part (either real or imaginary) of a complex literal.Since Fortran 2003, complex literal parts support named constants, which must be resolved in context at compile time (R422, R423).Some compilers also allow constant expressions for the parts, and must evaluate at compile time. That's not allowed in any standard. Apparently, gfortran and ifort don't allow it, while nvfortran does. See: https://fortran-lang.discourse.group/t/complex-constants-and-variables/2909/3We specifically avoid supporting that by defining complex parts without being mutually recursive with  Expression. fortran-srcsigned real lit fortran-srcsigned int lit fortran-srcnamed constant fortran-srcA COMPLEX literal, composed of a real part and an imaginary part.Fortran has lots of rules on how COMPLEX literals are defined and used in various contexts. To support all that, we define the syntactic structure  to wrap all the parsing rules. Then during a analysis pass, you may (attempt to) convert these into a more regular type, like a Haskell (Double, Double) tuple. fortran-srcIs the given COMPLEX literal "pure", i.e. does it have no named constant components?  ( Safe-Inferred$)*0125689:;<=>? fortran-srcA location-tagged list of t as (t decorated with an a annotation).$The AST is polymorphic on some type a, which is used for arbitrary annotations. Since many AST nodes use lists (e.g. executable statements, declarations), we define a dedicated annotated list type to reuse.(Note that the list itself also holds an a annotation. fortran-srcConvert a non-empty list to an . fortran-srcConvert a list to an *, returning Nothing iff the list is empty.5) Safe-Inferred$)*0125689:;<=>? fortran-srcThe Fortran specification version used (or relevant to its context).The constructor ordering is important, since it's used for the Ord instance (which is used extensively for pretty printing). fortran-src Deduce the  from a  using extension.1Defaults to Fortran 90 if suffix is unrecognized.  * Safe-Inferred')*0125689:;<=>?33+ Safe-Inferred&)*0125689:;<=>?, Safe-Inferred%)*0125689:;<=>?- Safe-Inferred&)*0125689:;<=>?. Safe-Inferred$)*0125689:;<=>? fortran-srcObtain set of intrinsics that are most closely aligned with given version. fortran-srcname => (return-unit, parameter-units) This is an exhaustive list of intrinsics listed in 15.10 of X3.9-1978 Safe-Inferred$)*0125689:;<=>?Ķ  fortran-srcDimension declarator stored in  dimension attributes and  s.  fortran-src0Declarators. R505 entity-decl from F90 ISO spec.Declaration statements can have multiple variables on the right of the double colon, separated by commas. A   identifies a single one of these. In F90, they look like this::VAR_NAME ( OPT_ARRAY_DIMS ) * CHAR_LENGTH_EXPR = INIT_EXPRF77 doesn't standardize so nicely -- in particular, I'm not confident in initializing expression syntax. So no example.Only CHARACTERs may specify a length. However, a nonstandard syntax feature uses non-CHARACTER lengths as a kind parameter. We parse regardless of type and warn during analysis.  fortran-srcValues and literals. Note that  kind parameters may only be available on certain Fortran parsers. The fixed form parsers (F77, F66) may not parse them.  fortran-src/The string representation of an integer literal  fortran-src+The string representation of a real literal  fortran-src2The real and imaginary parts of a complex literal  (real, imag).  fortran-srcA string literal  fortran-srcA BOZ literal constant  fortran-srcA Hollerith literal  fortran-srcThe name of a variable  fortran-srcThe name of a built-in function  fortran-srcA boolean value  fortran-src$User-defined operators in interfaces  fortran-src#Overloaded assignment in interfaces  fortran-srcUse a value as an expression.  fortran-src-A binary operator applied to two expressions.  fortran-src+A unary operator applied to one expression.  fortran-srcArray indexing  fortran-src%) notation for variables inside data types  fortran-src5A function expression applied to a list of arguments.  fortran-src$Implied do (i.e. one-liner do loops)  fortran-srcArray initialisation  fortran-src#Function return value specification  fortran-srcGuaranteed to be   fortran-src2Part of the newer (Fortran 2003?) FLUSH statement.See: https://www.ibm.com/docs/en/xl-fortran-aix/15.1.0?topic=attributes-flush-fortran-2003  fortran-srcscalar integer expression  fortran-srcscalar integer variable  fortran-srcscalar character variable  fortran-srcstatement label  fortran-src4Field types in pre-Fortran 90 non-standard structurerecordunion extension.>Structures were obsoleted by derived types in later standards.!The outer structure is stored in  .  fortran-src Regular field  fortran-src Union field  fortran-srcSubstructure (nested inline record structure)  fortran-srcThe part of a DATA statement describing a single set of initializations.The initializer list must be compatible with the name list. Generally, that means either the lengths must be equal, or the name list is the singleton list referring to an array, and the initializer list is compatible with that array's shape.  fortran-src!A single COMMON block definition.The  2s here shall not contain initializing expressions.  fortran-src(List of names for an IMPLICIT statement.  fortran-srcPart of ALLOCATE statement.There are restrictions on how ALLOCATE options can be combined. See F2018 9.7.1, or: https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/a-to-b/allocate-statement.html  fortran-src(output) status of allocation  fortran-src#(output) error condition if present  fortran-srcExtra data type to disambiguate between plain variable arguments and expression arguments (due to apparent behaviour of some Fortran compilers to treat these differently). Note the  and  instances pass to the inner   for  .  fortran-srcPart of USE statement. (F2018 14.2.2)&Expressions may be names or operators.  fortran-srcname  fortran-src5Part of a FORALL statement. Introduced in Fortran 95.  fortran-src$Declare variable(s) at a given type.  fortran-src,A structure (pre-F90 extension) declaration.  fortran-src>SAVE statement: variable retains its value between invocations  fortran-src!DIMENSION attribute as statement.  fortran-src ALLOCATABLE attribute statement.  fortran-src!ASYNCHRONOUS attribute statement.  fortran-srcPOINTER attribute statement.  fortran-srcTARGET attribute statement.  fortran-srcVALUE attribute statement.  fortran-srcVOLATILE attribute statement.  fortran-src!PARAMETER attribute as statement.  fortran-src5A COMMON statement, defining a list of common blocks.  fortran-src guaranteed ExpValue ValVariable  fortran-srcCASE construct opener.  fortran-srcinner CASE clause  fortran-srcEND SELECT statement  fortran-srcSpecial TYPE "print" statement (~F77 syntactic sugar for PRINT/WRITE)Not to be confused with the TYPE construct in later standards for defining derived data types.  fortran-src)ALLOCATE: associate pointers with targets  fortran-src+NULLIFY: disassociate pointers from targets  fortran-src.DEALLOCATE: disassociate pointers from targets  fortran-srcbegin WHERE block  fortran-src$WHERE clause. compare to IF, IF ELSE  fortran-srcend WHERE block  fortran-src6Import definitions (procedures, types) from a module. (F2018 14.2.2)If a module nature isn't provided and there are both intrinsic and nonintrinsic modules with that name, the nonintrinsic module is selected.  fortran-srcprocedure names, guaranteed ExpValue ValVariable  fortran-src;TYPE ... = begin a DDT (derived data type) definition block  fortran-src3END TYPE [ type-name ] = end a DDT definition block  fortran-src!FORALL ... = begin a FORALL block  fortran-srcEND FORALL [ construct-name ]  fortran-src5FORALL statement - essentially an inline FORALL block  fortran-src guaranteed ExpValue ValVariable  fortran-src Statement  fortran-srcFORALL array assignment syntax  fortran-srcIF block construct  fortran-srcSELECT CASE construct  fortran-src The first  + in the abbreviation tuple is always an ExpValue _ _ (ValVariable id) . Also guaranteed nonempty. TODO  fortran-srcBlock-level comment  fortran-src%A Fortran program unit. _(F2008 2.2)_3A Fortran program is made up of many program units.3Related points from the Fortran 2008 specification:There must be exactly one main program, and any number of other program units.Note 2.3: There may be at most 1 unnamed block data program unit.  fortran-src Main program  fortran-srcModule  fortran-src!Subroutine subprogram (procedure)  fortran-srcFunction subprogram (procedure)  fortran-srcBlock data (named or unnamed).  fortran-srcProgram unit-level comment  fortran-srcThe "kind selector" of a declaration statement. Tightly bound to  .HP's F90 spec (pg.24) actually differentiates between "kind selectors" and "char selectors", where char selectors can specify a length (alongside kind), and the default meaning of an unlabelled kind parameter (the 8 in INTEGER(8)) is length instead of kind. We handle this correctly in the parsers, but place both into this   type.The upshot is, length is invalid for non-CHARACTER types, and the parser guarantees that it will be Nothing. For CHARACTER types, both maybe or may not be present.+Often used with the assumption that when a   term is present, it contains some information (i.e. one of length or kind is  _;), so that the awkward "empty" possibility may be avoided.  fortran-srcThe type specification of a declaration statement, containing the syntactic type name and kind selector.See HP's F90 spec pg.24.  fortran-srcType name referenced in syntax.In many Fortran specs and compilers, certain types are actually "synonyms" for other types with specified kinds. The primary example is DOUBLE PRECISION being equivalent to REAL(8). Type kinds were introduced in Fortran 90, and it should be safe to replace all instances of DOUBLE PRECISION with REAL(8) in Fortran 90 code. However, type kinds weren't present in (standard) Fortran 77, so this equivalence was detached from the user.In any case, it's unclear how strong the equivalence is and whether it can be retroactively applied to previous standards. We choose to parse types directly, and handle those transformations during type analysis, where we assign most scalars a kind (see NO).  fortran-srcThe empty annotation.  fortran-srcSet a  Declarator'6s initializing expression only if it has none already.+  fortran-src Lower index fortran-src Upper index fortran-srcStride  fortran-srcType fortran-src Attributes fortran-src Declarators  fortran-src Union fields  fortran-srcSubstructure name fortran-src Field name fortran-srcSubstructure fields  fortran-srcscalar integer variable  fortran-srcscalar character variable  fortran-src local name fortran-srcuse name  fortran-srcType specification fortran-src Attributes fortran-src Declarators  fortran-srcStructure name fortran-srcStructure fields  fortran-srcSave the given variables, or all saveable items in the program unit if   fortran-srcname (guaranteed ExpValue ValVariable) fortran-srcargument variables fortran-src%optional result variable (guaranteed ExpValue ValVariable)  fortran-src!file name to include. guaranteed ExpValue ValString fortran-srcFirst parsed to 7, then potentially "expanded out" in a post-parse step.  fortran-src condition fortran-src&statement (should not further recurse)  fortran-src block name fortran-srcCASE expression. Should be one of scalar CHARACTER, INTEGER or LOGICAL.  fortran-src.block name (must match a corresponding opener) fortran-srcCASE indices (expressions).  means it's CASE DEFAULT.  fortran-src1block name (must match corresponding opener name)  fortran-srcformat identifier fortran-srcvariables etc. to print  fortran-srcpointers (variables/references)  fortran-srcpointers (variables/references)  fortran-srcpointers (variables/references)  fortran-srcmust be LOGICAL fortran-srcguaranteed to be   fortran-src block name fortran-srcmust be LOGICAL  fortran-src block name fortran-srcmust be LOGICAL  fortran-src block name  fortran-src(name of module to use, guaranteed to be ExpValue ValVariable fortran-srcoptional explicit module nature fortran-src)definitions to import (including renames)  fortran-srcattributes (subset permitted) fortran-srcDDT name  fortran-src4optional type name (must match corresponding opener)  fortran-src block name fortran-srcFORALL header syntax  fortran-src block name  fortran-srcFORALL header syntax fortran-src guaranteed   or   fortran-srcLabel fortran-srcWrapped statement  fortran-srcLabel fortran-srcConstruct name fortran-srcHeader information fortran-srcBody fortran-srcLabel to END DO  fortran-srcLabel fortran-srcConstruct name fortran-srcIF, ELSE IF clauses fortran-src ELSE block fortran-srcLabel to END IF  fortran-srcLabel fortran-srcConstruct name fortran-src Scrutinee fortran-src CASE clauses fortran-src CASE default fortran-srcLabel to END SELECT  fortran-srcLabel fortran-srcConstruct name fortran-src Target label fortran-srcDo Specification fortran-srcBody fortran-srcLabel to END DO  fortran-srcLabel fortran-srcConstruct name fortran-src Target label fortran-src Condition fortran-srcBody fortran-srcLabel to END DO  fortran-srcLabel fortran-srcConstruct name fortran-srcExpression abbreviations fortran-srcBody fortran-srcLabel  fortran-srcLabel fortran-srcIs this an abstract interface? fortran-srcInterface procedures fortran-srcModule procedures  fortran-src Program name fortran-srcBody fortran-src Subprograms  fortran-src Program name fortran-srcBody fortran-src Subprograms  fortran-srcOptions (elemental, pure etc.) fortran-srcName fortran-src Arguments fortran-srcBody fortran-src Subprograms  fortran-src Return type fortran-srcOptions (elemental, pure etc.) fortran-srcName fortran-src Arguments fortran-srcResult fortran-srcBody fortran-src Subprograms  fortran-srcOptional block     / Safe-Inferred$)*0125689:;<=>? fortran-srcMonads which provide functionality to evaluate some Fortran type or value.We abstract over the evaluation target type in order to reuse this for both value evaluation, and "type evaluation", since there is (a small amount of) overlap.Instances of this class will have a way to access variables in the current context (e.g. a Reader over a Map), and log warnings (e.g. a  Writer String). fortran-src Target type that we evaluate to. fortran-srcArbitrarily record some user-facing information concerning evaluation.For example, potentially useful when making defaulting decisions.0 Safe-Inferred%)*/0125689:;<=>?Щ fortran-srcA simple pure interpreter for Fortran value evaluation programs. fortran-srcValue evaluation error. fortran-src!Catch-all for non-grouped errors. fortran-srcA convenience type over & bringing all requirements into scope. fortran-srcWrap the output of an operation that returns a scalar value into the main evaluator. fortran-srcEvaluate explicit binary operators (ones denoted as such in the AST).Note that this does not cover all binary operators -- there are many intrinsics which use function syntax, but are otherwise binary operators.  1 Safe-Inferred$)*0125689:;<=>?ф2 Safe-Inferred&")*0125689:;<=>?z fortran-src wrapper to make it easier to swap this out for a monad later. fortran-src.Note that this instance is tightly bound with   due to  # appending information on where   should have been prettied. By itself, this instance is less sensible.773 Safe-Inferred%)*0125689:;<=>?؃ fortran-src$Helper for forming COMPLEX literals.4 Safe-Inferred&)*0125689:;<=>?9 9 5 Safe-Inferred&)*0125689:;<=>?i9 9 6 Safe-Inferred&)*0125689:;<=>?9 9 7 Safe-Inferred%)*0125689:;<=>?  fortran-srcUNSAFE. Must be called with expected token types (see usage sites). Will cause a runtime exception if it doesn't form a valid REAL literal.8 Safe-Inferred&)*0125689:;<=>?s9 9 9 Safe-Inferred&)*0125689:;<=>?9 9 : Safe-Inferred$)*0125689:;<=>?$ fortran-src A subset of  8 which can only contain values that can be assigned to. fortran-src=If the expression can be seen as an lvalue, convert it to an .; Safe-Inferred%")*0125689:;<=>?  fortran-srcspecified with a * fortran-srcspecified with a : (Fortran2003) FIXME, possibly, with a more robust const-exp: fortran-src'specified with a non-trivial expression fortran-src!specified with a constant integer fortran-srcThe declared dimensions of a staticically typed array variable type is of the form [(dim1_lower, dim1_upper), (dim2_lower, dim2_upper)] fortran-src$Semantic type assigned to variables. ( stores the "type tag" given in syntax. s add metadata (kind and length), and resolve some "simple" types to a core type with a preset kind (e.g. `DOUBLE PRECISION` -> `REAL(8)`).;Fortran 90 (and beyond) features may not be well supported. fortran-src"Nothing denotes dynamic dimensions fortran-srcAttempt to recover the   that generated the given . fortran-srcRecover the most appropriate   for the given , depending on the given .Kinds weren't formalized as a syntactic feature until Fortran 90, so we ask for a context. If possible (>=F90), we prefer the more explicit representation e.g. REAL(8)<. For older versions, for specific type-kind combinations, DOUBLE PRECISION and DOUBLE COMPLEX are used instead. However, we otherwise don't shy away from adding kind info regardless of theoretical version support.Array types don't work properly, due to array type info being in a parent node that holds individual elements. fortran-srcGiven a  ? infer the "default" kind (or size of the variable in memory).Useful when you need a default kind, but gives you an unwrapped type. Consider using Analysis.deriveSemTypeFromBaseType also.Further documentation: https://docs.oracle.com/cd/E19957-01/805-4939/c400041360f5/index.html< Safe-Inferred$)*0125689:;<=>?-* fortran-srcoriginal annotation fortran-srcunique name for function/variable, after variable renaming phase fortran-src8original name for function/variable found in source text fortran-srcbasic block graph fortran-src5unique number for each block during dataflow analysis fortran-src:Information about potential / actual constant expressions. fortran-srcinterpreted integer fortran-srcuninterpreted integer fortran-srcuninterpreted real fortran-src'binary operation on potential constants fortran-src&unary operation on potential constants fortran-src+The type of "transformBiM"-family functions fortran-src*The type of "transformBi"-family functions fortran-srcBasic block graph. fortran-srcthe underlying graph fortran-srcthe entry node(s) fortran-srcthe exit node(s) fortran-src Basic block fortran-srcEmpty basic block graph fortran-src%Call function on the underlying graph fortran-src1Monadically call function on the underlying graph fortran-src;True iff the expression can be used with varName or srcName fortran-srcObtain either  or  from an   variable, or an  .Precedence is as follows:if  is present, it is returnedelse if  is present, it is returned)else the variable name itself is returned Crashes on   s which don't define a variable. fortran-src1Obtain the source name from an ExpValue variable. fortran-srcObtain either uniqueName or source name from an LvSimpleVar variable. fortran-src4Obtain the source name from an LvSimpleVar variable. fortran-srcGenerate an ExpValue variable with its source name == to its uniqueName. fortran-src?Obtain either ProgramUnit uniqueName or whatever is in the AST. fortran-src?Obtain either ProgramUnit sourceName or whatever is in the AST. fortran-srcCreate analysis annotations for the program, saving the original annotations. fortran-srcRemove analysis annotations from the program, restoring the original annotations. fortran-srcReturn list of expressions used as the left-hand-side of assignment statements (including for-loops and function-calls by reference). fortran-srcReturn list of expressions that are not "left-hand-side" of assignment statements. fortran-src,Is this an expression capable of assignment? fortran-src"Set of names found in an AST node. fortran-srcInitiate (lazy) computation of all LHS variables for each node of the AST so that it may be accessed later. fortran-srcSet of names found in the parts of an AST that are the target of an assignment statement. allLhsVars :: (Annotated b, Data a, Data (b (Analysis a))) => b (Analysis a) -> [Name] fortran-srcSet of names found in the parts of an AST that are the target of an assignment statement. fortran-src:Set of expressions used -- not defined -- by an AST-block. fortran-src7Set of expression used -- not defined -- by a statement fortran-src4Set of names used -- not defined -- by an AST-block. fortran-src%Set of names defined by an AST-block.= Safe-Inferred$)*0125689:;<=>? fortran-src How to handle declarations like  INTEGER x*8. If true, providing a character length for a non-character data type will treat it as a kind parameter. In both cases, a warning is logged (nonstandard syntax). fortran-src$Mapping of structures to field types fortran-src(Information about a detected type error. fortran-src%Mapping of names to type information. fortran-srcAnnotate AST nodes with type information and also return a type environment mapping names to type information. fortran-srcAnnotate AST nodes with type information and also return a type environment mapping names to type information; provided with a starting type environment. fortran-srcAnnotate AST nodes with type information, return a type environment mapping names to type information and return any type errors found; provided with a starting type environment. fortran-src&Records array type information from a  /. (Scalar type info is processed elsewhere.) Note that  is rewritten for  s in  later. TODO how does this assist exactly? disabling apparently doesn't impact tests fortran-srcAuxiliary function for getting semantic and construct type of a declaration. Used in standard declarations and structures fortran-srcCreate a structure env from the list of fields and add it to the InferState fortran-src+Derive the kind of a REAL literal constant.Logic taken from HP's F90 reference pg.33, written to gfortran's behaviour. Stays in the # monad so it can report type errors fortran-src Combine two  s with a  .:No real work done here, no kind combining, just selection. fortran-srcFor all types holding an  (in an  ), set the  field of the . fortran-srcAttempt to derive the = of a variable from the relevant parts of its surrounding  .+This is an example of a simple declaration:INTEGER(8) :: var_nameA declaration holds a  0 (left of the double colon; LHS) and a list of  s (right of the double colon; RHS). However, CHARACTER variable are allowed to specify their length via special syntax on the RHS:CHARACTER :: string*10so to handle that, this function takes that length as a Maybe Expression (as provided in  ).If a length was defined on both sides, the declaration length (RHS) is used. This matches gfortran's behaviour, though even with -Wall they don't warn on this rather confusing syntax usage. We report a (soft) type error. fortran-srcAttempt to derive a  from a  . fortran-src#Attempt to derive a SemType from a   and a  . fortran-srcDerive  directly from  , using relevant default kinds.  > Safe-Inferred$)*0125689:;<=>? fortran-srcAnnotate unique names for variable and function declarations and uses. fortran-srcAnnotate unique names for variable and function declarations and uses. With external module map. fortran-srcTake the unique name annotations and substitute them into the actual AST. fortran-src,Take a renamed program and undo the renames. fortran-srcConcat a scope, a variable, and a freshly generated number together to generate a "unique name".GitHub issue #190 showed it was possible to generate the same unique name for two different variables, if using the following unique name schema:scope "_" var n n=3: int1 -> func_int13 n=13: int -> func_int13Instead, we now insert another underscore between the variable and the fresh number, to disambiguate where the fresh number starts.scope "_" var "_" n n=3: int1 -> func_int1_3 n=13: int -> func_int_13? Safe-Inferred$)*0125689:;<=>?O@ Safe-Inferred$)*0125689:;<=>?A Safe-Inferred$)*0125689:;<=>?%B Safe-Inferred$)*0125689:;<=>?C Safe-Inferred$)*0125689:;<=>?  fortran-src1A mapping of program unit names to bblock graphs. fortran-src;Insert basic block graphs into each program unit's analysis fortran-srcCreate a mapping of (non-module) program unit names to their associated bblock graph. fortran-src2Show a basic block graph in a somewhat decent way. fortran-src,Show a basic block graph without the clutter fortran-srcShow a basic block supergraph fortran-srcPick out and show the basic block graphs in the program file analysis. fortran-src)Output a graph in the GraphViz DOT format fortran-src.Output a supergraph in the GraphViz DOT format fortran-srcSome helper functions to output some pseudo-code for readability. fortran-src,Fold a function over the graph. Monadically. fortran-src+Map a function over the graph. Monadically. fortran-srcMap a function over the  labels in a graph. Monadically.D Safe-Inferred$)*0125689:;<=>?&9 fortran-srcCallMap : program unit name -> { name of function or subroutine } fortran-src7InductionVarMapByASTBlock : AST-block label -> { name } fortran-srcMap of loop header nodes to the induction variables within that loop. fortran-src,LoopNodeMap : bblock node -> { bblock node } fortran-src(BackEdgeMap : bblock node -> bblock node fortran-srcThe map of all expressions and whether they are undecided (not present in map), a constant value (Just Constant), or probably not constant (Nothing). fortran-srcThe map of all parameter variables and their corresponding values fortran-src#Represent "flows" between variables fortran-srcFlowsGraph : nodes as AST-block (numbered by label), edges showing which definitions contribute to which uses. fortran-srcUDMap : use -> { definition } fortran-srcDUMap : definition -> { use } fortran-src-DefMap : variable name -> { AST-block label } fortran-srcBlockMap : AST-block label -> AST-block Each AST-block has been given a unique number label during analysis of basic blocks. The purpose of this map is to provide the ability to lookup AST-blocks by label. fortran-src?OutF, a function that returns the out-dataflow for a given node fortran-src=InF, a function that returns the in-dataflow for a given node fortran-src=InOutMap : node -> (dataflow into node, dataflow out of node) fortran-src>InOut : (dataflow into the bblock, dataflow out of the bblock) fortran-srcAn OrderF is a function from graph to a specific ordering of nodes. fortran-src-IDomMap : node -> immediate dominator of node fortran-src#DomMap : node -> dominators of node fortran-srcCompute dominators of each bblock in the graph. Node A dominates node B when all paths from the start node of that program unit must pass through node A in order to reach node B. That will be represented as the relation (B, [A, ...]) in the DomMap. fortran-srcCompute the immediate dominator of each bblock in the graph. The immediate dominator is, in a sense, the closest dominator of a node. Given nodes A and B, you can say that node A is immediately dominated by node B if there does not exist any node C such that: node A dominates node C and node C dominates node B. fortran-srcThe postordering of a graph outputs the label after traversal of children. fortran-srcReversed postordering. fortran-srcThe preordering of a graph outputs the label before traversal of children. fortran-srcReversed preordering. fortran-srcApply the iterative dataflow analysis method. Forces evaluation of intermediate data structures at each step. fortran-srcBuild a BlockMap from the AST. This can only be performed after analyseBasicBlocks has operated, created basic blocks, and labeled all of the AST-blocks with unique numbers. fortran-srcBuild a DefMap from the BlockMap. This allows us to quickly look up the AST-block labels that wrote into the given variable. fortran-srcDataflow analysis for live variables given basic block graph. Muchnick, p. 445: A variable is "live" at a particular program point if there is a path to the exit along which its value may be used before it is redefined. It is "dead" if there is no such path. fortran-srcIterate KILL" set through a single basic block. fortran-srcIterate GEN" set through a single basic block. fortran-srcKILL set for a single AST-block. fortran-srcGEN set for a single AST-block. fortran-srcReaching definitions dataflow analysis. Reaching definitions are the set of variable-defining AST-block labels that may reach a program point. Suppose AST-block with label A defines a variable named v. Label A may reach another program point labeled P if there is at least one program path from label A to label P that does not redefine variable v. fortran-srcdef-use map: map AST-block labels of defining AST-blocks to the AST-blocks that may use the definition. fortran-srcInvert the DUMap into a UDMap fortran-srcuse-def map: map AST-block labels of variable-using AST-blocks to the AST-blocks that define those variables. fortran-src$Convert a UD or DU Map into a graph. fortran-src6"Flows-To" analysis. Represent def-use map as a graph. fortran-srcCreate a map (A -> Bs) where A "flows" or contributes towards the variables Bs. fortran-src3Evaluate possible constant expressions within tree. fortran-srcGenerate a constant-expression map with information about the expressions (identified by insLabel numbering) in the ProgramFile pf (must have analysis initiated & basic blocks generated) . fortran-srcGet constant-expression information and put it into the AST analysis annotation. Must occur after analyseBBlocks. fortran-srcAnnotate AST with constant-expression information based on given ParameterVarMap. fortran-srcFind the edges that 'loop back' in the graph; ones where the target node dominates the source node. If the backedges are viewed as (m -> n) then n is considered the 'loop-header' fortran-srcFor each loop in the program, find out which bblock nodes are part of the loop by looking through the backedges (m, n) where n is considered the 'loop-header', delete n from the map, and then do a reverse-depth-first traversal starting from m to find all the nodes of interest. Intersect this with the strongly-connected component containing m, in case of improper& graphs with weird control transfers. fortran-srcSimilar to loopNodes except it creates a map from loop-header to the set of loop nodes, for each loop-header. fortran-src9The strongly connected component containing a given node. fortran-srcBasic induction variables are induction variables that are the most easily derived from the syntactic structure of the program: for example, directly appearing in a Do-statement. fortran-srcFor each loop in the program, figure out the names of the induction variables: the variables that are used to represent the current iteration of the loop. fortran-srcGenerate an induction variable map that is indexed by the labels on AST-blocks within those loops. fortran-srcFor every expression in a loop, try to derive its relationship to a basic induction variable. fortran-src.Show some information about dataflow analyses. fortran-srcOutputs a DOT-formatted graph showing flow-to data starting at the given AST-Block node in the given Basic Block graph. fortran-src7Create a call map showing the structure of the program. fortran-srcFinds the transitive closure of a directed graph. Given a graph G=(V,E), its transitive closure is the graph: G* = (V,E*) where E*={(i,j): i,j in V and there is a path from i to j in G} tc :: (DynGraph gr) => gr a b -> gr a () tc g = newEdges  insNodes ln empty where ln = labNodes g newEdges = [ toLEdge (u, v) () | (u, _) <- ln, (_, v) <- bfen (outU g u) g ] outU gr = map toEdge . out gr fortran-srcbasic block graph fortran-src'initialisation for in and out dataflows fortran-srcordering function fortran-src.compute the in-flow given an out-flow function fortran-src.compute the out-flow given an in-flow function fortran-srcfinal dataflow for each node fortran-srcresult of reaching definitionsE Safe-Inferred$)*0125689:;<=>?5! fortran-src,Status of mod-file compared to Fortran file. fortran-srcA set of decoded mod files. fortran-src"The data stored in the "mod files" fortran-src8A map of variables => their constant expression if known fortran-srcA map of aliases => strings, in order to save space and share structure for repeated strings. fortran-srcMap of unique variable name to the unique name of the program unit where it was defined, and the corresponding SrcSpan. fortran-srcContext of a declaration: the ProgramUnit where it was declared. fortran-src(uniqName, srcName) fortran-src(uniqName, srcName) fortran-src1Standard ending of fortran-src-format "mod files" fortran-srcReturns true for filepaths with an extension that identifies them as a mod file. fortran-srcEmpty set of mod files. (future proof: may not always be a list) fortran-srcStarting point. fortran-srcExtracts the module map, declaration map and type analysis from an analysed and renamed ProgramFile, then inserts it into the ModFile. fortran-srcGenerate a fresh ModFile from the module map, declaration map and type analysis of a given analysed and renamed ProgramFile. fortran-srcLooks up the raw "other data" that may be stored in a ModFile by applications that make use of fortran-src. fortran-srcGet a list of the labels present in the "other data" of a ModFile. More of a meta-programming / debugging feature. fortran-srcAllows modification insertiondeletion of "other data" that may be stored in a ModFile by applications that make use of fortran-src. See PQ< for more information about the interface of this function. fortran-src environment) by collecting all of the stored module maps within the PUModule annotation. fortran-srcExtract map of declared variables with their associated program unit and source span. fortran-srcExtract a string map from the given data, leaving behind aliased values in place of strings in the returned version. fortran-srcRewrite the data with the string map aliases replaced by the actual values (implicitly sharing structure). fortran-src7Extract a map of variables assigned to constant values. fortran-srcCompare the source file timestamp to the fsmod file timestamp, if it exists.((F Safe-Inferred$)*0125689:;<=>?;: fortran-srcOur common Fortran parser type takes a filename and input, and returns either a normalized error (tokens are printed) or an untransformed  . fortran-srcObtain a Fortran parser by assuming the version from the filename provided. fortran-srcThe default post-parse AST transformation for each Fortran version./Formed by composing transformations end-to-end.Note that some transformations are noncommutative e.g. labeled DO grouping must be done before block DO grouping. fortran-srcInitialize free-form parser state with the lexer configured for standalone expression parsing.The free-form lexer needs a non-default start code for lexing standaloe expressions. fortran-src4Convenience wrapper to easily use a parser unsafely.This throws a catchable runtime IO exception, which is used in the tests. fortran-srcHelper for preparing initial parser state for the different lexers. fortran-srcEntry point for include filesWe can't perform full analysis (though it might be possible to do in future) but the AST is enough for certain types of analysis/refactoring00G Safe-Inferred$)*0125689:;<=>??<STUVWXVWYZ[\]^_`abcddefghijjklmnopqrstuvwxyz{|}~                                         !!!!!!!!!!!!""""#############$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$%%%%%&&&&&&&&&&&&&&'''''''''''''''''''''''''''''''''(((((((((((((((((((((((((((((((((((((((((()))))))))))))))))))*****************************************************************+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++,,--------------------------------------------------------------------------------------------------------------------------------------------.......................                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 ////000000000000000000000000000000000000122222222222222222222222222222222222222222222222222222222222222222222222222233444445555566666777888889999::::::::::::::;;;;;;;O;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;<N<N<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<==============>>>>>>>?????@@@ABBBCCCCCCCCCCCCCCCCCCCDDDDDDDDDDDDDDDDDDDDDD DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFGGGGGGGGGGGGGGGGGGSVVVVV.VVV4455668899<<==========>CCCDDDDDDDEEFRRRRRRRRfortran-src-0.11.0-inplace$Language.Fortran.Repr.Compat.NaturalLanguage.Fortran.AST&Language.Fortran.Repr.Type.Scalar.Real%Language.Fortran.Repr.Type.Scalar.IntLanguage.Fortran.AST.Common Language.Fortran.AST.Literal.Boz!Language.Fortran.AST.Literal.Real"Language.Fortran.Parser.LexerUtilsLanguage.Fortran.Repr.Tmp(Language.Fortran.Repr.Type.Scalar.StringLanguage.Fortran.Repr.Util(Language.Fortran.Repr.Type.Scalar.Common)Language.Fortran.Repr.Type.Scalar.Complex!Language.Fortran.Repr.Type.Scalar Language.Fortran.Repr.Type.ArrayLanguage.Fortran.Repr.Type"Language.Fortran.Repr.Value.Common)Language.Fortran.Repr.Value.Scalar.Common*Language.Fortran.Repr.Value.Scalar.Complex0Language.Fortran.Repr.Value.Scalar.Int.Idealized.Language.Fortran.Repr.Value.Scalar.Int.Machine4Language.Fortran.Repr.Value.Scalar.Logical.Idealized2Language.Fortran.Repr.Value.Scalar.Logical.Machine'Language.Fortran.Repr.Value.Scalar.Real(Language.Fortran.Repr.Eval.Value.Op.Some)Language.Fortran.Repr.Value.Scalar.String*Language.Fortran.Repr.Value.Scalar.Machine)Language.Fortran.Repr.Value.Array.Machine#Language.Fortran.Repr.Value.Machine#Language.Fortran.Repr.Eval.Value.Op"Language.Fortran.Rewriter.InternalLanguage.Fortran.Util.Files$Language.Fortran.Util.FirstParameterLanguage.Fortran.AST.Annotated%Language.Fortran.Util.SecondParameterLanguage.Fortran.Util.PositionLanguage.Fortran.RewriterLanguage.Fortran.AST.Literal$Language.Fortran.AST.Literal.ComplexLanguage.Fortran.AST.AListLanguage.Fortran.VersionLanguage.Fortran.Parser.Monad"Language.Fortran.Parser.Free.Lexer"Language.Fortran.Parser.Free.Utils#Language.Fortran.Parser.Fixed.LexerLanguage.Fortran.Intrinsics!Language.Fortran.Repr.Eval.Common Language.Fortran.Repr.Eval.ValueLanguage.Fortran.Repr.Eval.TypeLanguage.Fortran.PrettyPrint#Language.Fortran.Parser.ParserUtils&Language.Fortran.Parser.Free.Fortran95&Language.Fortran.Parser.Free.Fortran90(Language.Fortran.Parser.Free.Fortran2003#Language.Fortran.Parser.Fixed.Utils'Language.Fortran.Parser.Fixed.Fortran77'Language.Fortran.Parser.Fixed.Fortran66Language.Fortran.LValue'Language.Fortran.Analysis.SemanticTypesLanguage.Fortran.AnalysisLanguage.Fortran.Analysis.Types"Language.Fortran.Analysis.Renaming%Language.Fortran.Transformation.Monad(Language.Fortran.Transformation.Grouping8Language.Fortran.Transformation.Disambiguation.Intrinsic7Language.Fortran.Transformation.Disambiguation.Function!Language.Fortran.Analysis.BBlocks"Language.Fortran.Analysis.DataFlowLanguage.Fortran.Util.ModFileLanguage.Fortran.Parser"Language.Fortran.Analysis.ModGraph&Language.Fortran.Repr.Value.Scalar.Int*Language.Fortran.Repr.Value.Scalar.Logical"Language.Fortran.Repr.Value.ScalarLanguage.Fortran.Repr.Value!Language.Fortran.Repr.Value.ArrayLanguage.Fortran.ReprAnalysisSemTypeData.Map.StrictalterPaths_fortran_src ghc-bignumGHC.Num.NaturalNaturalbaseGHC.BaseNonEmpty:|FTRealFTReal4FTReal8FTIntFTInt1FTInt2FTInt4FTInt8FTInt16Name Conforming Nonconforming BozPrefix BozPrefixB BozPrefixO BozPrefixZBoz bozPrefix bozStringbozPrefixWasPostfixparseBoz prettyBoz bozAsNatural bozAsTwosComp $fEqBozPrefix$fEqBoz $fShowBoz $fGenericBoz $fDataBoz$fOrdBoz $fNFDataBoz$fOutBoz$fShowBozPrefix$fGenericBozPrefix$fDataBozPrefix$fOrdBozPrefix$fNFDataBozPrefix$fOutBozPrefix$fEqConforming$fShowConforming$fGenericConforming$fDataConforming$fOrdConforming$fNFDataConforming$fOutConformingExponentLetter ExpLetterE ExpLetterD ExpLetterQExponentexponentLetter exponentNumRealLitrealLitSignificandrealLitExponentprettyHsRealLit readRealLit parseRealLit $fEqRealLit $fShowRealLit $fDataRealLit$fGenericRealLit$fNFDataRealLit $fOutRealLit $fOrdRealLit $fEqExponent$fShowExponent$fDataExponent$fGenericExponent$fNFDataExponent $fOutExponent $fOrdExponent$fEqExponentLetter$fShowExponentLetter$fDataExponentLetter$fGenericExponentLetter$fNFDataExponentLetter$fOutExponentLetter$fOrdExponentLetter readIntOrBozNaturalKtestFtestDprettyHexByteString prettyHexByteprettyHexByteStringCompactCharLenCharLenAssumedCharLenDeferred prettyCharLen $fEqCharLen $fOrdCharLen $fShowCharLen $fDataCharLen$fGenericCharLennatVal''SingCmpSingEqSingLtSingGtFKindedFKindOf FKindDefault printFKind parseFKind FKindType FKindTerm reifyKinded singCompare FTRealCombineSFTRealSFTReal4SFTReal8!ShowsPrec_6989586621679101166Sym3!ShowsPrec_6989586621679101166Sym2.ShowsPrec_6989586621679101166Sym2KindInference!ShowsPrec_6989586621679101166Sym1.ShowsPrec_6989586621679101166Sym1KindInference!ShowsPrec_6989586621679101166Sym0.ShowsPrec_6989586621679101166Sym0KindInferenceShowsPrec_6989586621679101166Compare_6989586621679098627Sym2Compare_6989586621679098627Sym1,Compare_6989586621679098627Sym1KindInferenceCompare_6989586621679098627Sym0,Compare_6989586621679098627Sym0KindInferenceCompare_6989586621679098627 TFHelper_6989586621679097586Sym2 TFHelper_6989586621679097586Sym1-TFHelper_6989586621679097586Sym1KindInference TFHelper_6989586621679097586Sym0-TFHelper_6989586621679097586Sym0KindInferenceTFHelper_6989586621679097586 FTReal8Sym0 FTReal4Sym0;$fSuppressUnusedWarningsFUNTFHelper_6989586621679097586Sym1 $fPEqFTReal;$fSuppressUnusedWarningsFUNTFHelper_6989586621679097586Sym0:$fSuppressUnusedWarningsFUNCompare_6989586621679098627Sym1 $fPOrdFTReal:$fSuppressUnusedWarningsFUNCompare_6989586621679098627Sym0<$fSuppressUnusedWarningsFUNShowsPrec_6989586621679101166Sym2<$fSuppressUnusedWarningsFUNShowsPrec_6989586621679101166Sym1 $fPShowFTReal<$fSuppressUnusedWarningsFUNShowsPrec_6989586621679101166Sym0$fFKindedFTReal$fSingIFTRealFTReal8$fSingIFTRealFTReal4$fTestCoercionFTRealSFTReal$fTestEqualityFTRealSFTReal$fSDecideFTReal $fSShowFTReal $fSOrdFTReal $fSEqFTReal$fSingKindFTReal $fEqFTReal $fOrdFTReal $fShowFTReal $fEnumFTReal $fDataFTReal$fGenericFTReal $fShowSFTRealFTIntMinFTIntMax FTIntCombineSFTIntSFTInt1SFTInt2SFTInt4SFTInt8SFTInt16!ShowsPrec_6989586621679161580Sym3!ShowsPrec_6989586621679161580Sym2.ShowsPrec_6989586621679161580Sym2KindInference!ShowsPrec_6989586621679161580Sym1.ShowsPrec_6989586621679161580Sym1KindInference!ShowsPrec_6989586621679161580Sym0.ShowsPrec_6989586621679161580Sym0KindInferenceShowsPrec_6989586621679161580Compare_6989586621679161570Sym2Compare_6989586621679161570Sym1,Compare_6989586621679161570Sym1KindInferenceCompare_6989586621679161570Sym0,Compare_6989586621679161570Sym0KindInferenceCompare_6989586621679161570 TFHelper_6989586621679161561Sym2 TFHelper_6989586621679161561Sym1-TFHelper_6989586621679161561Sym1KindInference TFHelper_6989586621679161561Sym0-TFHelper_6989586621679161561Sym0KindInferenceTFHelper_6989586621679161561 FTInt16Sym0 FTInt8Sym0 FTInt4Sym0 FTInt2Sym0 FTInt1Sym0;$fSuppressUnusedWarningsFUNTFHelper_6989586621679161561Sym1 $fPEqFTInt;$fSuppressUnusedWarningsFUNTFHelper_6989586621679161561Sym0:$fSuppressUnusedWarningsFUNCompare_6989586621679161570Sym1 $fPOrdFTInt:$fSuppressUnusedWarningsFUNCompare_6989586621679161570Sym0<$fSuppressUnusedWarningsFUNShowsPrec_6989586621679161580Sym2<$fSuppressUnusedWarningsFUNShowsPrec_6989586621679161580Sym1 $fPShowFTInt<$fSuppressUnusedWarningsFUNShowsPrec_6989586621679161580Sym0$fFKindedFTInt$fSingIFTIntFTInt16$fSingIFTIntFTInt8$fSingIFTIntFTInt4$fSingIFTIntFTInt2$fSingIFTIntFTInt1$fTestCoercionFTIntSFTInt$fTestEqualityFTIntSFTInt$fSDecideFTInt $fSShowFTInt $fSOrdFTInt $fSEqFTInt$fSingKindFTInt $fEqFTInt $fOrdFTInt $fShowFTInt $fEnumFTInt $fDataFTInt$fGenericFTInt $fShowSFTIntFTComplexWrapperunFTComplexWrapper$fFKindedFTComplexWrapper$fGenericFTComplexWrapper$fDataFTComplexWrapper$fShowFTComplexWrapper$fEqFTComplexWrapper$fOrdFTComplexWrapper FScalarTypeFSTIntFSTReal FSTComplex FSTLogical FSTString FSTCustomprettyScalarType prettyKinded$fGenericFScalarType$fDataFScalarType$fShowFScalarType$fEqFScalarType$fOrdFScalarTypeShapegetShape FArrayType fatScalarfatShapefatSize$fGenericFArrayType$fDataFArrayType$fShowFArrayType$fEqFArrayType$fOrdFArrayType$fGenericShape $fDataShape $fShowShape $fEqShape $fOrdShapeFType MkFScalarType MkFArrayType$fGenericFType $fEqFType $fShowFType $fDataFTypeCheckChecked UncheckedPrimReprMachine Idealized SomeFKindedsomeFKindedKind SomeFComplexFComplex FComplex8 FComplex16 fComplexBOp' fComplexBOp$fEqSomeFKinded$fShowSomeFKinded $fOrdFComplex $fEqFComplex$fShowFComplex SomeFIntIFIntIFIntMRepfIntICheckBoundssomeFIntIBOpWrap $fShowFIntI $fEqFIntI $fOrdFIntISomeFIntIsFIntFIntFInt1FInt2FInt4FInt8fIntUOpInternalfIntUOp'fIntUOpfIntUOpInplace'fIntUOpInplacefIntBOpInternalfIntBOp'fIntBOpfIntBOpInplace'fIntBOpInplacewithFInt $fOrdFInt$fEqFInt $fShowFIntFLogical$fShowFLogical $fEqFLogical $fOrdFLogicalfLogicalToBoolfLogicalNumericFromBoolconsumeFLogicalNumeric fLogicalNot SomeFRealFRealFReal4FReal8fRealUOpInternal fRealUOp'fRealUOpfRealUOpInplace'fRealUOpInplacefRealBOpInternal fRealBOp'fRealBOpfRealBOpInplace'fRealBOpInplace$fOrdSomeFKinded $fOrdFReal $fEqFReal $fShowFRealsomeFIntUOpInplace' someFIntUOp' someFIntUOpsomeFIntUOpWrap'someFIntUOpWrap someFIntBOp' someFIntBOpsomeFIntBOpWrap'someFIntBOpWrap someFRealBOp' someFRealBOpsomeFRealBOpWrap'someFRealBOpWrap someFRealUOp' someFRealUOpsomeFRealUOpWrap'someFRealUOpWrapsomeFComplexBOp'someFComplexBOpsomeFComplexBOpWrap'someFComplexBOpWrapsomeFComplexFromReal SomeFStringFStringfString fStringLen someFStringsomeFStringLen concatFStringconcatSomeFString fStringBOpsomeFStringBOp$fEqSomeFString$fShowSomeFString $fOrdFString $fEqFString $fShowFString FScalarValueFSVIntFSVReal FSVComplex FSVLogical FSVStringfScalarValueType$fGenericFScalarValue$fShowFScalarValue$fEqFScalarValue FArrayValueFAVIntFAVReal FAVComplex FAVLogical FAVStringSomeFVA unSomeFVA KnownNatsnatValsFVAunFVASizemkFVA1fvaShape mkSomeFVA someFVAKind someFVAShape mkSomeFVA1fArrayValueType $fKnownNats[] $fKnownNats:$fShowFArrayValue $fShowSomeFVA$fShowSomeFVA0$fShowSomeFVA1$fShowSomeFVA2 $fShowFVAFValue MkFArrayValueMkFScalarValue fValueType $fShowFValueError EBadArgType1 EBadArgType2EGenericopIcDble eBadArgType1 eBadArgType2eGenericopIcNumericBOpopIcNumericBOpRealIntSep opIcNumRelBOpopIcNumericUOpInplaceopIcLogicalBOpopEqopIor'opIor $fShowError $fEqErrorReplacementMapChunkReplacementErrorOverlappingErrorInvalidRangeError ReplacementRChar SourceRangeSourceLocation toRCharList markRChars markRChars_setReplacementStringSLsetReplacementStringSRevaluateRChars evaluateRChar nextChunk nextChunk_ allChunksevaluateChunksevaluateChunks_ isInsertion insertionSRsetReplacementsetReplacementsadjustLineWrapadjustLineWrapAuxdeleteRCappendRC areDisjoint isValidRangeisValidLocation checkRangescheckOverlappingapplyReplacementsapplyReplacements_$fOrdSourceLocation$fShowSourceRange$fOrdReplacement$fExceptionReplacementError$fShowReplacementError$fEqReplacementError$fShowReplacement$fEqReplacement $fShowRChar $fEqRChar$fEqSourceRange$fShowSourceLocation$fEqSourceLocation flexReadFilegetDirContentsrGetDirContentsGFirstParametergetFirstParameter'setFirstParameter'FirstParametergetFirstParametersetFirstParameter$fGFirstParameterkU1[]$fGFirstParameterk:*:e$fGFirstParameterk:+:e$fGFirstParameterkM1e$fGFirstParameterkK1e$fGFirstParameterkK1e0 Annotated getAnnotation setAnnotationmodifyAnnotationSecondParametergetSecondParametersetSecondParameter$fGSecondParameterk:+:e$fGSecondParameterkM1e$fGSecondParameterkK1e$fGSecondParameter'kK1e$fGSecondParameter'kK1e0$fGSecondParameter'k:*:e$fGSecondParameter'kM1e$fParameterLeafk:*:$fParameterLeafkM1$fGSecondParameterk:*:e SpannedPair getTransSpanSpannedgetSpansetSpanSrcSpanssFromssToPositionposAbsoluteOffset posColumnposLine posFilePathposPragmaOffsetLocgetPos initPositionlineColapparentLineColapparentFilePathcolumnDistance lineDistance spannedLines initSrcSpan emptySpan$fShowPosition$fNFDataPosition$fBinaryPosition $fOutSrcSpan $fShowSrcSpan$fNFDataSrcSpan$fBinarySrcSpan$fSpannedEither$fSpannedSrcSpan$fSpannedPaira[]$fSpannedPaira[]0$fSpannedPairab $fSpanned(,,)$fSpanned(,,)0$fSpanned(,,)1$fSpanned(,,)2 $fSpanned(,) $fSpanned(,)0 $fSpanned(,)1$fSpannedNonEmpty $fSpanned[] $fEqSrcSpan $fOrdSrcSpan $fDataSrcSpan$fGenericSrcSpan $fEqPosition $fOrdPosition$fDataPosition$fGenericPositionpartitionOverlappingprocessReplacementsspanToSourceRangespanToSourceRange2sourceRangeBetweenTwoSpans KindParam KindParamInt KindParamVar$fSpannedKindParam!$fSecondParameterKindParamSrcSpan$fAnnotatedKindParam$fFirstParameterKindParama $fEqKindParam$fShowKindParam$fDataKindParam$fGenericKindParam$fFunctorKindParam$fNFDataKindParam$fOutKindParam ComplexPartComplexPartRealComplexPartIntComplexPartNamed ComplexLitcomplexLitAnno complexLitPoscomplexLitRealPartcomplexLitImagPartcomplexLitIsPure$fSpannedComplexPart#$fSecondParameterComplexPartSrcSpan$fAnnotatedComplexPart$fFirstParameterComplexParta$fSpannedComplexLit"$fSecondParameterComplexLitSrcSpan$fAnnotatedComplexLit$fFirstParameterComplexLita$fEqComplexLit$fShowComplexLit$fDataComplexLit$fGenericComplexLit$fFunctorComplexLit$fNFDataComplexLit$fOutComplexLit$fEqComplexPart$fShowComplexPart$fDataComplexPart$fGenericComplexPart$fFunctorComplexPart$fNFDataComplexPart$fOutComplexPartATuple atupleAnno atupleSpan atupleFst atupleSndAList alistAnno alistSpan alistListfromList fromList'fromReverseListfromReverseList'aConsaEmptyaReverseaStripaStrip'aMap $fNFDataAList $fOutAList$fSpannedAList$fAnnotatedAList$fSecondParameterAListSrcSpan$fFirstParameterALista$fFunctorAList$fNFDataATuple $fOutATuple$fSpannedATuple$fSecondParameterATupleSrcSpan$fFirstParameterATuplea $fEqATuple $fShowATuple $fDataATuple$fGenericATuple$fFunctorATuple $fEqAList $fShowAList $fDataAList$fGenericAListFortranVersion Fortran66 Fortran77Fortran77ExtendedFortran77Legacy Fortran90 Fortran95 Fortran2003 Fortran2008fortranVersionAliasesselectFortranVersiondeduceFortranVersion$fNFDataFortranVersion$fOutFortranVersion$fShowFortranVersion$fOrdFortranVersion$fEqFortranVersion$fDataFortranVersion$fGenericFortranVersionParseunParseTokeofToken LastToken getLastToken ParseResultParseOk ParseFailed ParseErrorerrPos errLastToken errFilenameerrMsg ParseState psAlexInputpsParanthesesCount psVersion psFilename psContextContextConStartConData ConImplicit ConNamelist ConCommonParanthesesCountpcActual pcHasReached0tokenMsgrunParserunParseUnsafe throwIOError evalParse execParse getVersionputAlexgetAlex topContext popContext pushContext getPosition getSrcSpangetParanthesesCountresetParincPardecPar$fExceptionParseError$fShowParseError$fMonadErrorParseErrorParse$fMonadStateParseStateParse$fApplicativeParse$fFunctorParse$fMonadFailParse $fMonadParse$fFunctorParseResult$fShowParseState $fShowContext $fEqContext$fShowParanthesesCount$fEqParanthesesCountTokenTIdTCommentTStringTIntegerLiteral TRealLiteral TBozLiteralTCommaTComma2 TSemiColonTColon TDoubleColon TOpAssignTArrowTPercentTLeftPar TLeftPar2 TRightPar TLeftInitPar TRightInitPar TOpCustomTOpExpTOpPlusTOpMinusTStar TOpDivisionTSlashTOpOrTOpAndTOpNot TOpEquivalentTOpNotEquivalentTOpLTTOpLETOpEQTOpNETOpGTTOpGETLogicalLiteral TUnderscoreTProgram TEndProgram TFunction TEndFunctionTResultTPure TElemental TRecursive TSubroutineTEndSubroutine TBlockData TEndBlockDataTModule TEndModule TContainsTUseTOnlyTImport TAbstract TInterface TEndInterface TProcedureTModuleProcedure TAssignment TOperatorTCallTReturnTEntryTIncludeTBindTCTName TAllocatable TAsynchronous TDimension TExternalTIntent TIntrinsic TNonIntrinsic TOptional TParameterTPointerTPrivateTPublic TProtectedTSaveTTargetTValue TVolatileTInTOutTInOutTData TNamelist TImplicit TEquivalenceTCommonTFormatTBlob TAllocateTStatTErrMsgTSource TDeallocateTNullifyTNoneTGotoTAssignTTo TContinueTStopTPauseTDoTEndDoTWhileTIfTThenTElseTElsifTEndIfTCase TSelectCase TEndSelectTDefaultTCycleTExitTForall TEndForall TAssociate TEndAssociateTWhere TElsewhere TEndWhereTTypeTEndType TSequenceTClassTEnum TEnumeratorTEndEnumTKindTLenTIntegerTRealTDoublePrecisionTLogical TCharacterTComplexTOpenTCloseTReadTWriteTPrint TBackspaceTRewindTInquireTEndfileTEndTNewlineTEOFTFlushTUnitTIOStatTIOMsgTErr LexAction AlexInput aiSourceBytes aiPosition aiEndOffsetaiPreviousCharaiLexeme aiStartCodeaiPreviousTokenaiPreviousTokensInLine StartCodescActualscStatusStartCodeStatusReturnStablevanillaAlexInputlexerlexer'scN$fSpannedLexeme $fTokToken$fSpannedToken$fFirstParameterTokenSrcSpan$fLastTokenAlexInputToken$fLocAlexInput$fSpecifiesType[]$fSpecifiesTypeToken$fShowAlexInput $fEqToken $fShowToken $fDataToken$fGenericToken$fShowStartCode$fShowStartCodeStatus $fShowLexeme unitNameCheck parseErroraiBytesaiWhiteSensitiveCharCountaiCaseSensitive aiInComment aiInFormataiFortranVersion lexemeMatch TLeftArrayParTRightArrayParTDot TStructureTRecordTUnionTMap TEndStructure TEndUnionTEndMapTEndif TCaseDefaultTDoWhile TTypePrintTStatic TAutomaticTInt TExponentTBool TAmpersandTOpXOr THollerithTLabellexN $fOrdTokenIntrinsicsTable IntrinsicTypeITReal ITInteger ITComplexITDouble ITLogical ITCharacterITParamgetVersionIntrinsicsgetIntrinsicReturnTypegetIntrinsicDefsUsesgetIntrinsicNames isIntrinsic allIntrinsics$fShowIntrinsicsEntry$fEqIntrinsicsEntry$fOrdIntrinsicsEntry$fGenericIntrinsicsEntry$fShowIntrinsicType$fEqIntrinsicType$fOrdIntrinsicType$fGenericIntrinsicTypeNamedgetNamesetNameProgramUnitNameNamelessBlockDataNamelessComment NamelessMainLabeledgetLabel getLastLabelsetLabelBinaryOpAddition SubtractionMultiplicationDivisionExponentiation ConcatenationGTGTELTLTEEQNEOrXOrAnd Equivalent NotEquivalent BinCustomUnaryOpPlusMinusNotUnCustomDimensionDeclarator dimDeclAnno dimDeclSpan dimDeclLower dimDeclUpperDeclaratorType ScalarDecl ArrayDecl DeclaratordeclaratorAnnodeclaratorSpandeclaratorVariabledeclaratorTypedeclaratorLengthdeclaratorInitialValue ValIntegerValReal ValComplex ValStringValBoz ValHollerith ValVariable ValIntrinsic ValLogical ValOperator ValAssignmentValTypeValStarValColonIndexIxSingleIxRange ExpressionExpValue ExpBinaryExpUnary ExpSubscript ExpDataRefExpFunctionCall ExpImpliedDoExpInitialisation ExpReturnSpecDoSpecification doSpecAnno doSpecSpan doSpecInitial doSpecLimitdoSpecIncrement FlushSpecFSUnitFSIOStatFSIOMsgFSErr FormatItem FIFormatList FIHollerith FIDelimiterFIFieldDescriptorDEFGFIFieldDescriptorAILFIBlankDescriptor FIScaleFactorUnionMap unionMapAnno unionMapSpanunionMapFields StructureItem StructFields StructUnionStructStructure DataGroup dataGroupAnno dataGroupSpandataGroupNamesdataGroupInitializersNamelist namelistAnno namelistSpan namelistName namelistVars CommonGroupcommonGroupAnnocommonGroupSpancommonGroupNamecommonGroupVars ImpElementimpElementAnnoimpElementSpanimpElementFrom impElementToImpList impListAnno impListSpan impListTypeimpListElementsAllocOptAOStatAOErrMsgAOSource ControlPaircontrolPairAnnocontrolPairSpancontrolPairNamecontrolPairExprIntentInOutInOut AttributeAttrAllocatableAttrAsynchronous AttrDimension AttrExternal AttrIntent AttrIntrinsic AttrOptional AttrParameter AttrPointer AttrPrivate AttrProtected AttrPublicAttrSave AttrSuffix AttrTarget AttrValue AttrVolatileArgumentExpressionArgExpr ArgExprVarArgument argumentAnno argumentSpan argumentName argumentExprUse UseRenameUseID ModuleNature ModIntrinsicModNonIntrinsicOnly Exclusive PermissiveForallHeaderPartforallHeaderPartAnnoforallHeaderPartSpanforallHeaderPartNameforallHeaderPartStartforallHeaderPartEndforallHeaderPartStride ForallHeaderforallHeaderAnnoforallHeaderSpanforallHeaderHeadersforallHeaderScaling ProcInterfaceProcInterfaceNameProcInterfaceTypeProcDecl procDeclAnno procDeclSpanprocDeclEntityNameprocDeclInitName Statement StDeclaration StStructureStIntent StOptionalStPublic StPrivate StProtectedStSave StDimension StAllocatableStAsynchronous StPointerStTargetStValue StVolatileStData StAutomaticStStatic StNamelist StParameter StExternal StIntrinsicStCommon StEquivalenceStFormat StImplicitStEntry StIncludeStDo StDoWhileStEnddoStCycleStExit StIfLogicalStIfArithmetic StSelectCaseStCase StEndcase StFunctionStExpressionAssignStPointerAssign StLabelAssignStGotoUnconditionalStGotoAssignedStGotoComputedStCallStReturn StContinueStStopStPauseStReadStRead2StWriteStPrint StTypePrintStOpenStCloseStFlush StInquireStRewind StRewind2 StBackspace StBackspace2 StEndfile StEndfile2 StAllocate StNullify StDeallocateStWhereStWhereConstruct StElsewhere StEndWhereStUseStModuleProcedure StProcedureStType StEndType StSequenceStForall StEndForallStForallStatementStImportStEnum StEnumerator StEndEnum StFormatBogusBlock BlStatementBlForallBlIfBlCaseBlDo BlDoWhile BlAssociate BlInterface BlCommentCommentSuffixSfxBindPrefix PfxRecursive PfxElementalPfxPure PrefixSuffixSuffixesPrefixes ProgramUnitPUMainPUModule PUSubroutine PUFunction PUBlockData PUComment ProgramFileprogramFileMetaprogramFileProgramUnitsMetaInfo miVersion miFilenameSelector selectorAnno selectorSpanselectorLength selectorKindTypeSpec typeSpecAnno typeSpecSpantypeSpecBaseTypetypeSpecSelectorBaseType TypeIntegerTypeRealTypeDoublePrecision TypeComplexTypeDoubleComplex TypeLogical TypeCharacter TypeCustom ClassStar ClassCustomTypeByteA0 pfSetFilename pfGetFilename emptyPrefixes emptySuffixesemptyPrefixSuffixvalidPrefixSuffixprogramUnitBodyupdateProgramUnitBodyprogramUnitSubprogramsargExprNormalizeargExtractExprsetInitialisationnonExecutableStatementexecutableStatementexecutableStatementBlocknonExecutableStatementBlock $fOutNonEmpty$fNFDataBaseType $fOutBaseType$fNFDataMetaInfo $fOutMetaInfo$fNFDataPrefix $fOutPrefix$fSpannedPrefix$fSecondParameterPrefixSrcSpan$fFirstParameterPrefixa$fNFDataComment $fOutComment $fNFDataOnly $fOutOnly$fNFDataModuleNature$fOutModuleNature$fNFDataIntent $fOutIntent$fNFDataImpElement$fOutImpElement$fSpannedImpElement$fAnnotatedImpElement"$fSecondParameterImpElementSrcSpan$fFirstParameterImpElementa$fNFDataFormatItem$fOutFormatItem$fSpannedFormatItem$fAnnotatedFormatItem"$fSecondParameterFormatItemSrcSpan$fFirstParameterFormatItema$fNFDataUnaryOp $fOutUnaryOp$fBinaryUnaryOp$fNFDataBinaryOp $fOutBinaryOp$fBinaryBinaryOp$fNFDataUnionMap$fNFDataStructureItem$fNFDataSuffix$fNFDataNamelist$fNFDataImpList$fNFDataFlushSpec$fNFDataDeclaratorType$fNFDataDeclarator$fNFDataDimensionDeclarator$fNFDataDataGroup$fNFDataAllocOpt$fNFDataControlPair$fNFDataCommonGroup$fNFDataAttribute $fNFDataUse$fNFDataArgumentExpression$fNFDataArgument$fNFDataForallHeaderPart$fNFDataForallHeader$fNFDataSelector$fNFDataDoSpecification$fNFDataProcInterface$fNFDataProcDecl$fNFDataStatement $fNFDataIndex$fNFDataTypeSpec$fNFDataExpression $fNFDataBlock$fNFDataProgramUnit$fOutForallHeaderPart$fOutForallHeader $fOutAllocOpt$fOutControlPair$fOutDeclaratorType$fOutDimensionDeclarator$fOutDeclarator $fOutSelector $fOutTypeSpec$fOutFlushSpec$fOutDoSpecification $fOutIndex$fOutExpression $fOutNamelist $fOutUnionMap$fOutStructureItem$fOutDataGroup$fOutCommonGroup $fOutBlock $fOutImpList$fOutAttribute$fOutUse$fOutArgumentExpression $fOutArgument$fOutProcInterface $fOutProcDecl$fOutStatement $fOutSuffix$fOutProgramUnit$fSpannedForallHeaderPart$fSpannedForallHeader$fSpannedAllocOpt$fSpannedControlPair$fSpannedDimensionDeclarator$fSpannedDeclarator$fSpannedFlushSpec$fSpannedDoSpecification$fSpannedIndex$fSpannedExpression$fSpannedNamelist$fSpannedUnionMap$fSpannedStructureItem$fSpannedDataGroup$fSpannedCommonGroup$fSpannedBlock$fSpannedImpList$fSpannedSelector$fSpannedProcInterface$fSpannedProcDecl$fSpannedTypeSpec$fSpannedAttribute $fSpannedUse$fSpannedArgument$fSpannedStatement$fSpannedSuffix$fSpannedProgramUnit$fAnnotatedForallHeaderPart$fAnnotatedForallHeader$fAnnotatedAllocOpt$fAnnotatedControlPair$fAnnotatedDimensionDeclarator$fAnnotatedDeclarator$fAnnotatedFlushSpec$fAnnotatedDoSpecification$fAnnotatedIndex$fAnnotatedExpression$fAnnotatedNamelist$fAnnotatedUnionMap$fAnnotatedStructureItem$fAnnotatedDataGroup$fAnnotatedCommonGroup$fAnnotatedImpList$fAnnotatedAttribute$fAnnotatedSelector$fAnnotatedProcInterface$fAnnotatedProcDecl$fAnnotatedTypeSpec$fAnnotatedUse$fAnnotatedArgument$fAnnotatedStatement$fAnnotatedBlock$fAnnotatedProgramUnit($fSecondParameterForallHeaderPartSrcSpan$$fSecondParameterForallHeaderSrcSpan $fSecondParameterAllocOptSrcSpan#$fSecondParameterControlPairSrcSpan+$fSecondParameterDimensionDeclaratorSrcSpan"$fSecondParameterDeclaratorSrcSpan!$fSecondParameterFlushSpecSrcSpan'$fSecondParameterDoSpecificationSrcSpan$fSecondParameterIndexSrcSpan"$fSecondParameterExpressionSrcSpan $fSecondParameterNamelistSrcSpan $fSecondParameterUnionMapSrcSpan%$fSecondParameterStructureItemSrcSpan!$fSecondParameterDataGroupSrcSpan#$fSecondParameterCommonGroupSrcSpan$fSecondParameterImpListSrcSpan!$fSecondParameterAttributeSrcSpan $fSecondParameterSelectorSrcSpan%$fSecondParameterProcInterfaceSrcSpan $fSecondParameterProcDeclSrcSpan $fSecondParameterTypeSpecSrcSpan$fSecondParameterUseSrcSpan $fSecondParameterArgumentSrcSpan!$fSecondParameterStatementSrcSpan$fSecondParameterBlockSrcSpan$fSecondParameterSuffixSrcSpan#$fSecondParameterProgramUnitSrcSpan!$fFirstParameterForallHeaderParta$fFirstParameterForallHeadera$fFirstParameterAllocOpta$fFirstParameterControlPaira$$fFirstParameterDimensionDeclaratora$fFirstParameterDeclaratora$fFirstParameterFlushSpeca $fFirstParameterDoSpecificationa$fFirstParameterIndexa$fFirstParameterExpressiona$fFirstParameterNamelista$fFirstParameterUnionMapa$fFirstParameterStructureItema$fFirstParameterDataGroupa$fFirstParameterCommonGroupa$fFirstParameterImpLista$fFirstParameterAttributea$fFirstParameterSelectora$fFirstParameterProcInterfacea$fFirstParameterProcDecla$fFirstParameterTypeSpeca$fFirstParameterUsea$fFirstParameterArgumenta$fFirstParameterStatementa$fFirstParameterBlocka$fFirstParameterSuffixa$fFirstParameterProgramUnita$fSpannedArgumentExpression$fAnnotatedArgumentExpression$fNFDataProgramFile$fOutProgramFile$fSpannedProgramFile$fLabeledBlock$fNFDataProgramUnitName$fBinaryProgramUnitName$fNamedProgramUnit$fOrdProgramUnitName$fEqProgramUnitName$fShowProgramUnitName$fDataProgramUnitName$fGenericProgramUnitName$fEqProgramFile$fShowProgramFile$fDataProgramFile$fGenericProgramFile$fFunctorProgramFile$fEqExpression$fShowExpression$fDataExpression$fGenericExpression$fFunctorExpression $fEqIndex $fShowIndex $fDataIndex$fGenericIndex$fFunctorIndex$fEqDoSpecification$fShowDoSpecification$fDataDoSpecification$fGenericDoSpecification$fFunctorDoSpecification $fEqStatement$fShowStatement$fDataStatement$fGenericStatement$fFunctorStatement$fEqDeclarator$fShowDeclarator$fDataDeclarator$fGenericDeclarator$fFunctorDeclarator$fEqDeclaratorType$fShowDeclaratorType$fDataDeclaratorType$fGenericDeclaratorType$fFunctorDeclaratorType$fEqDimensionDeclarator$fShowDimensionDeclarator$fDataDimensionDeclarator$fGenericDimensionDeclarator$fFunctorDimensionDeclarator $fEqFlushSpec$fShowFlushSpec$fDataFlushSpec$fGenericFlushSpec$fFunctorFlushSpec$fEqStructureItem$fShowStructureItem$fDataStructureItem$fGenericStructureItem$fFunctorStructureItem $fEqUnionMap$fShowUnionMap$fDataUnionMap$fGenericUnionMap$fFunctorUnionMap $fEqAttribute$fShowAttribute$fDataAttribute$fGenericAttribute$fFunctorAttribute $fEqSuffix $fShowSuffix $fDataSuffix$fGenericSuffix$fFunctorSuffix $fEqTypeSpec$fShowTypeSpec$fDataTypeSpec$fGenericTypeSpec$fFunctorTypeSpec $fEqSelector$fShowSelector$fDataSelector$fGenericSelector$fFunctorSelector $fEqDataGroup$fShowDataGroup$fDataDataGroup$fGenericDataGroup$fFunctorDataGroup $fEqNamelist$fShowNamelist$fDataNamelist$fGenericNamelist$fFunctorNamelist$fEqCommonGroup$fShowCommonGroup$fDataCommonGroup$fGenericCommonGroup$fFunctorCommonGroup $fEqImpList $fShowImpList $fDataImpList$fGenericImpList$fFunctorImpList $fEqAllocOpt$fShowAllocOpt$fDataAllocOpt$fGenericAllocOpt$fFunctorAllocOpt$fEqControlPair$fShowControlPair$fDataControlPair$fGenericControlPair$fFunctorControlPair $fEqArgument$fShowArgument$fDataArgument$fGenericArgument$fFunctorArgument$fEqArgumentExpression$fShowArgumentExpression$fDataArgumentExpression$fGenericArgumentExpression$fFunctorArgumentExpression$fEqUse $fShowUse $fDataUse $fGenericUse $fFunctorUse$fEqForallHeader$fShowForallHeader$fDataForallHeader$fGenericForallHeader$fFunctorForallHeader$fEqForallHeaderPart$fShowForallHeaderPart$fDataForallHeaderPart$fGenericForallHeaderPart$fFunctorForallHeaderPart$fEqProcInterface$fShowProcInterface$fDataProcInterface$fGenericProcInterface$fFunctorProcInterface $fEqProcDecl$fShowProcDecl$fDataProcDecl$fGenericProcDecl$fFunctorProcDecl $fEqBlock $fShowBlock $fDataBlock$fGenericBlock$fFunctorBlock$fEqProgramUnit$fShowProgramUnit$fDataProgramUnit$fGenericProgramUnit$fFunctorProgramUnit $fEqBinaryOp $fOrdBinaryOp$fShowBinaryOp$fDataBinaryOp$fGenericBinaryOp $fEqUnaryOp $fOrdUnaryOp $fShowUnaryOp $fDataUnaryOp$fGenericUnaryOp$fEqFormatItem$fShowFormatItem$fDataFormatItem$fGenericFormatItem$fFunctorFormatItem $fEqValue $fShowValue $fDataValue$fGenericValue$fFunctorValue $fNFDataValue $fOutValue$fEqImpElement$fShowImpElement$fDataImpElement$fGenericImpElement$fFunctorImpElement $fEqIntent $fShowIntent $fDataIntent$fGenericIntent$fEqModuleNature$fShowModuleNature$fDataModuleNature$fGenericModuleNature$fEqOnly $fShowOnly $fDataOnly $fGenericOnly $fEqComment $fShowComment $fDataComment$fGenericComment$fFunctorComment $fEqPrefix $fShowPrefix $fDataPrefix$fGenericPrefix$fFunctorPrefix $fEqMetaInfo$fShowMetaInfo$fDataMetaInfo$fGenericMetaInfo $fOrdBaseType $fEqBaseType$fShowBaseType$fDataBaseType$fGenericBaseType$fBinaryBaseType MonadEvalEvalTo lookupFVarwarnEvalValueSimpleKindLit ENoSuchVarEKindLitBadTypeENoSuchKindForType EUnsupportedEOp EOpTypeErrorELazyMonadEvalValuerunEvalValueSimpleevalVarevalExpr forceVarExprevalLiterrevalKp evalRealKpevalUOpwrapOpwrapSOpevalBOpboolXor defFLogicalevalFunctionCallevalArg forceScalarforceUnconsArg forceArgsevalIntrinsicIorevalIntrinsicMax$fMonadEvalWriterT$fGenericErrorfromExpression ReformatStateRefmtStNewlineRefmtStComment RefmtStStmtPrettypprint'IndentablePrettypprint IndentationtooOld olderThan printMaybeprintIndentedBlockWithPrenewlineincIndentationindentoverlay fixedFormpprintAndRenderendGen noParensLitcommaSep$reformatMixedFormInsertContinuations prettyError$fIndentablePrettyUnionMap$fIndentablePretty[]$fIndentablePretty[]0$fIndentablePrettyProgramFile$fIndentablePrettyMaybe$fPrettyBinaryOp$fPrettyUnaryOp$fPrettyDimensionDeclarator$fPrettyDeclarator$fIndentablePrettyStructureItem$fPrettyComplexPart$fPrettyKindParam$fPrettyComplexLit $fPrettyValue $fPrettyIndex$fPrettyExpression$fPrettyImpElement$fPrettyDataGroup$fPrettyNamelist$fPrettyCommonGroup$fPrettyImpList$fPrettyAllocOpt$fPrettyControlPair$fPrettyDoSpecification$fPrettyFlushSpec$fPrettyFormatItem$fPrettyIntent$fPrettySuffix$fPrettyAttribute$fPrettyArgumentExpression$fPrettyArgument $fPrettyUse $fPrettyOnly$fPrettyProcDecl$fPrettyProcInterface$fPrettyStatement$fPrettySelector$fPrettyTypeSpec$fPrettyBaseType$fPrettyATuple $fPrettyAList $fPretty[] $fPrettyMaybe$fIndentablePrettyBlock$fIndentablePrettyProgramUnit$fIndentablePrettya$fEqReformatState$fOrdReformatState$fShowReformatStateexprToComplexLitPart complexLit programParserfunctionParser blockParserstatementParserexpressionParser makeRealLitconvCmtsincludesParserLValue LvSimpleVar LvSubscript LvDataReftoLValue$fSpannedLValue$fAnnotatedLValue$fSecondParameterLValueSrcSpan$fFirstParameterLValuea $fEqLValue $fShowLValue $fDataLValue$fGenericLValue$fFunctorLValue CharacterLen CharLenStar CharLenColon CharLenExp CharLenInt DimensionsTByteTArrayTCustomKindcharLenSelectorcharLenSelector'charLenToValue getTypeKind setTypeKind charLenConcatrecoverSemTypeTypeSpeckindOfBaseType getTypeSize setTypeSize$fNFDataCharacterLen$fOutCharacterLen$fBinaryCharacterLen$fPrettySemType $fOutSemType$fBinarySemType $fEqSemType $fOrdSemType $fShowSemType $fDataSemType$fGenericSemType$fOrdCharacterLen$fEqCharacterLen$fShowCharacterLen$fDataCharacterLen$fGenericCharacterLenprevAnnotation uniqueName sourceNamebBlocksinsLabel moduleEnvidType allLhsVarsAnnconstExpConstantConstIntConstUninterpIntConstUninterpReal ConstBinary ConstUnaryIDTypeidVTypeidCType ConstructType CTFunction CTSubroutine CTExternal CTVariableCTArray CTParameter CTIntrinsicModEnvNameType NTSubprogram NTVariable NTIntrinsic TransFuncM TransFuncBBNodeBBGrbbgrGr bbgrEntries bbgrExitsBB bbgrEmptybbgrMapbbgrMapMisNamedExpressionvarNamesrcName lvVarName lvSrcNamegenVarpuName puSrcName initAnalysis stripAnalysislhsExprsrhsExprsisLExprallVarsanalyseAllLhsVarsanalyseAllLhsVars1 allLhsVars blockRhsExprs blockVarUses blockVarDefs$fDataGr $fOutNameType$fBinaryNameType$fBinaryConstructType$fOutConstructType$fBinaryIDType $fOutIDType$fBinaryConstant $fOutConstant $fOutAnalysis$fFunctorAnalysis$fDataAnalysis$fShowAnalysis $fEqAnalysis$fGenericAnalysis$fShowConstant $fOrdConstant $fEqConstant$fGenericConstant$fDataConstant $fOrdIDType $fEqIDType $fShowIDType $fDataIDType$fGenericIDType$fOrdConstructType$fEqConstructType$fShowConstructType$fDataConstructType$fGenericConstructType$fShowNameType $fEqNameType $fOrdNameType$fDataNameType$fGenericNameType $fDataBBGr $fShowBBGr$fEqBBGr $fGenericBBGr TypeErrorTypeEnv analyseTypesanalyseTypesWithEnvanalyseAndCheckTypesWithEnvextractTypeEnv inferState0runInferderiveSemTypeFromDeclarationderiveSemTypeFromTypeSpecderiveSemTypeFromBaseType$fEqInferConfig$fShowInferConfig$fShowInferState ModuleMapanalyseRenamesanalyseRenamesWithModuleMaprenameunrename$fShowRenameState$fEqRenameState Transform runTransformgetProgramFileputProgramFilemodifyProgramFile groupForallgroupDogroupLabeledDodisambiguateIntrinsicdisambiguateFunction$fIndexedExpression$fIndexedArgument SuperBBGrsuperBBGrGraphsuperBBGrClusterssuperBBGrEntries ASTExprNode ASTBlockNode BBlockMapanalyseBBlocks genBBlockMap genSuperBBGrfindLabeledBBlockshowBBGrshowAnalysedBBGr showSuperBBGr showBBlocks bbgrToDOTsuperBBGrToDOT showBlockCallMapDerivedInductionMap InductionExprIETopIELinearIEBottomInductionVarMapByASTBlockInductionVarMap LoopNodeMap BackEdgeMap ConstExpMapParameterVarMap VarFlowsMap FlowsGraphUDMapDUMapDefMapBlockMapOutFInFInOutMapOrderFIDomMapDomMapASTExprNodeSetASTExprNodeMapASTBlockNodeSetASTBlockNodeMap BBNodeSet BBNodeMap dominators iDominators postOrder revPostOrderpreOrder revPreOrderdataFlowSolver genBlockMap genDefMapliveVariableAnalysisreachingDefinitionsgenDUMap duMapToUdMapgenUDMapgenFlowsToGraphgenVarFlowsToMapconstantFoldinggenConstExpMapanalyseConstExpsanalyseParameterVarsgenBackEdgeMap loopNodesgenLoopNodeMapsccWithgenInductionVarMapgenInductionVarMapByASTBlockgenDerivedInductionMap showDataFlow showFlowsDOT genCallMap$fNFDataInductionExpr$fNFDataIEFlow $fShowIEFlow $fEqIEFlow $fOrdIEFlow$fGenericIEFlow $fDataIEFlow$fShowInductionExpr$fEqInductionExpr$fOrdInductionExpr$fGenericInductionExpr$fDataInductionExprTimestampStatus NoSuchFile CompileFile ModFileExistsModFilesModFile ParamVarMap StringMapDeclMap DeclContextDCMain DCBlockDataDCModule DCFunction DCSubroutine modFileSuffix emptyModFiles emptyModFile regenModFile genModFilelookupModFileDatagetLabelsModFileDataalterModFileDataalterModFileDataF encodeModFile decodeModFiledecodeModFilesdecodeModFiles'combinedModuleMapcombinedTypeEnvcombinedDeclMapcombinedStringMapcombinedParamVarMapmoduleFilenamegenUniqNameToFilenameMapextractModuleMapextractDeclMapextractStringMapextractParamVarMapcheckTimestamps$fBinaryDeclContext$fBinaryModFile $fEqModFile $fOrdModFile $fShowModFile $fDataModFile$fGenericModFile$fOrdDeclContext$fEqDeclContext$fShowDeclContext$fDataDeclContext$fGenericDeclContext ParserMaker StateInitParseErrorSimpleerrorPos errorFilenameerrorMsgParserbyVer byVerWithModsf66f77f77ef77lf90f95f2003f66NoTransformf77NoTransformf77eNoTransformf77lNoTransformf90NoTransformf95NoTransformf2003NoTransformf66StmtNoTransformf77StmtNoTransformf77eStmtNoTransformf77lStmtNoTransformf90StmtNoTransformf95StmtNoTransformf2003StmtNoTransform byVerStmtf90ExprbyVerFromFilename transformAsdefaultTransformation makeParsermakeParserFixedmakeParserFreeinitParseStateFixedinitParseStateFreeinitParseStateFreeExprinitParseStateFixedExpr parseUnsafe f77lIncludesf77lIncIncludes collectTokenscollectTokensSafe$fShowParseErrorSimple$fExceptionParseErrorSimpleModGraph mgModNodeMapmgGraph mgNumNodes ModOriginMOFileMOFSMod genModGraph modGraphToDOT takeNextMods delModNodes$fOrdModOrigin $fEqModGraph$fDataModGraph $fEqModOrigin$fDataModOrigin$fShowModOriginGHC.Num.IntegerIntegersingletons-base-3.1-e2515f274f8d93f9f4ecbb3c1dc5c373cc1e99d4be6c633743c710cb0295d6f9Data.Singletons.Base.Instances SOrderingData.Type.EqualityRefl Unsafe.Coerce unsafeCoerceSEQData.Functor.ConstConstGHC.NumNumbytestring-0.11.3.1Data.ByteString.Internal ByteStringGHC.IOFilePathfortran77intrinsics GHC.MaybeJustNothingGHC.ErrerrorHappyStkcomputeAllLhsVarsstatementRhsExprs$inferConfigAcceptNonCharLengthAsKind StructTypeEnvrecordArrayDeclhandleDeclarationhandleStructurederiveRealLiteralKindInferbinopSimpleCombineSemTypes setSemType$deriveSemTypeFromBaseTypeAndSelectoruniquifyufoldM'gmapM'nmapM'fgl-5.8.0.0-5c24179c33acd8d21f5120409cd698ab16e648a128e948ca23dd22a5c2340948Data.Graph.Inductive.GraphNode bblockKill bblockGen blockKillblockGen mapToGraphbasicInductionVarsconvergeinsEdges isModFilerevertStringMapinitParseStateversiongetDataFileName getBinDir getLibDir getDynLibDir getDataDir getLibexecDir getSysconfDir