úÎ!0#)}y      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxNoneM{fplll7Flags controlling LLL reduction. Can be combined using ./  !"#$%&'()*+,-./*+,-.)('&%$#"!  None¸ ;fplll,Automatically select the LLL implementation.<fplll.Use a slower method that has proven precision.=fplllUse the heuristic method.>fplll)Use the fast but less precise LLL method.?fplll)Automatically select floating point type.@fplllUse double precision.AfplllUse the  long double type.BfpllluUse DPE (Double Plus Exponent) floating point representation, which can represent values with extra large exponents.CfplllŸUse double-double arithmetic, where each value is represented as the sum of two double values, representing the most and least significant bits, respectively.DfplllNUse quad-double arithmetic. Values are represented as the sum of four doubles.Efplll,Use MPFR for arbitrary precision arithmetic.IfplllDefault options, i.e. no flags.Jfplll1Algorithm returned successfully. In some cases a 5 is only returned in case of an error, such as with 3, in which case this value will never be returned.;<=>?@ABCDEFGHIJKLMNOPQRST;<=>?@ABCDEIFGHJKLMNOPQRSTNone) jfplll1Options to configure the LLL reduction algorithm.lfplll|´ controls the Lovász condition, i.e. how much the length of consecutive Gram-Schmidt orthogonal basis vectors can decrease.mfpllls· is an upper bound on the largest Gram-Schmidt coefficient, i.e. how far from orthogonal the reduced basis can be.nfplllLLL reduction method.ofplll9What sort of floating point to use for orthogonalization.pfplll]Bits of precision for floating point if ftMpfr is used. Chooses automatically if set to zero.qfplll$Extra options for the LLL reduction.sfplllhCompute an LLL-reduced basis for the given lattice. Each item of the list is a basis vector. Returns a Left  on failure.tfplll Similar to sõ, but additionally return (in the second output) the operations that were applied to the basis vectors. In other words, the second return value tracks the operations applied to the basis vectors by applying them to the identity matrix as well.ufplllLike uO, but return the inverse matrix of the applied operations in the third output. jkmlnopqrstu stujkmlnopqry        !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmmnopqrstuvwxyzfplll-0.1.0.0-inplaceMath.Lattices.Fplll.InternalMath.Lattices.Fplll.TypesMath.Lattices.Fplll.LLLAlgebra.Lattice\/ lllReduceLLLFlags RedStatus FloatType LLLMethodc_lll_reduction_uinv_idc_lll_reduction_u_idc_lll_reductionc_redStatusStrc_redHlllSrFailurec_redHlllNormFailurec_redHlllFailurec_redBkzLoopsLimitc_redBkzTimeLimitc_redBkzFailurec_redEnumFailurec_redLllFailurec_redBabaiFailurec_redGsoFailure c_redSuccessc_floatTypeStrc_ftMpfrc_ftQDc_ftDDc_ftDpec_ftLongDouble c_ftDouble c_ftDefault c_lllDefault c_lllSiegel c_lllEarlyRed c_lllVerbosec_lllMethodStrc_lmFast c_lmHeuristic c_lmProved c_lmWrapperc_lllDefaultEtac_lllDefaultDelta allocaMpz peekBasis pokeBasisallocaAndPokeBasisallEqual $fEqLLLMethod$fOrdLLLMethod$fStorableLLLMethod $fEqFloatType$fOrdFloatType$fStorableFloatType $fEqRedStatus$fOrdRedStatus$fStorableRedStatus $fEqLLLFlags $fOrdLLLFlags$fStorableLLLFlags lmWrapperlmProved lmHeuristiclmFast ftDefaultftDouble ftLongDoubleftDpeftDDftQDftMpfr lllVerbose lllEarlyRed lllSiegel lllDefault redSuccess redGsoFailureredBabaiFailure redLllFailureredEnumFailure redBkzFailureredBkzTimeLimitredBkzLoopsLimitredHlllFailureredHlllNormFailureredHlllSrFailure$fBooleanAlgebraLLLFlags$fBiHeytingAlgebraLLLFlags$fCoHeytingAlgebraLLLFlags$fHeytingAlgebraLLLFlags$fSemiCoHeytingAlgebraLLLFlags$fSemiHeytingAlgebraLLLFlags)$fUpperBoundedDistributiveLatticeLLLFlags)$fLowerBoundedDistributiveLatticeLLLFlags$fDistributiveLatticeLLLFlags$fBoundedLatticeLLLFlags$fUpperBoundedLatticeLLLFlags$fLowerBoundedLatticeLLLFlags $fBoundedMeetSemiLatticeLLLFlags $fBoundedJoinSemiLatticeLLLFlags$fLatticeLLLFlags$fMeetSemiLatticeLLLFlags$fJoinSemiLatticeLLLFlags$fShowLLLFlags$fShowRedStatus$fShowFloatType$fShowLLLMethod LLLOptionsdeltaetamethod floatType precisionflags defaultLLLlllReduceTracklllReduceTrackInv$fEqLLLOptions$fOrdLLLOptions$fShowLLLOptions