{-# LANGUAGE CPP #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE Rank2Types #-} ----------------------------------------------------------------------------- -- | -- Module : Control.Monad.Free -- Copyright : (C) 2008-2012 Edward Kmett -- License : BSD-style (see the file LICENSE) -- -- Maintainer : Edward Kmett -- Stability : provisional -- Portability : MPTCs, fundeps -- -- Monads for free ---------------------------------------------------------------------------- module Control.Monad.Free ( MonadFree(..) , Free(..) , retract , liftF , iter , hoistFree ) where import Control.Applicative import Control.Monad (liftM, MonadPlus(..)) import Control.Monad.Trans.Class import Control.Monad.Free.Class import Control.Monad.Reader.Class import Control.Monad.Writer.Class import Control.Monad.State.Class import Control.Monad.Error.Class import Control.Monad.Cont.Class import Data.Functor.Bind import Data.Foldable import Data.Traversable import Data.Semigroup.Foldable import Data.Semigroup.Traversable #ifdef GHC_TYPEABLE import Data.Data #endif -- | The 'Free' 'Monad' for a 'Functor' @f@. -- -- /Formally/ -- -- A 'Monad' @n@ is a free 'Monad' for @f@ if every monad homomorphism -- from @n@ to another monad @m@ is equivalent to a natural transformation -- from @f@ to @m@. -- -- /Why Free?/ -- -- Every \"free\" functor is left adjoint to some \"forgetful\" functor. -- -- If we define a forgetful functor @U@ from the category of monads to the category of functors -- that just forgets the 'Monad', leaving only the 'Functor'. i.e. -- -- @U (M,'return','Control.Monad.join') = M@ -- -- then 'Free' is the left adjoint to @U@. -- -- Being 'Free' being left adjoint to @U@ means that there is an isomorphism between -- -- @'Free' f -> m@ in the category of monads and @f -> U m@ in the category of functors. -- -- Morphisms in the category of monads are 'Monad' homomorphisms (natural transformations that respect 'return' and 'Control.Monad.join'). -- -- Morphisms in the category of functors are 'Functor' homomorphisms (natural transformations). -- -- Given this isomorphism, every monad homomorphism from @'Free' f@ to @m@ is equivalent to a natural transformation from @f@ to @m@ -- -- Showing that this isomorphism holds is left as an exercise. -- -- In practice, you can just view a @'Free' f a@ as many layers of @f@ wrapped around values of type @a@, where -- @('>>=')@ performs substitution and grafts new layers of @f@ in for each of the free variables. -- -- This can be very useful for modeling domain specific languages, trees, or other constructs. -- -- This instance of 'MonadFree' is fairly naive about the encoding. For more efficient free monad implementations that require additional -- extensions and thus aren't included here, you may want to look at the @kan-extensions@ package. -- -- A number of common monads arise as free monads, -- -- * Given @data Empty a@, @'Free' Empty@ is isomorphic to the 'Data.Functor.Identity' monad. -- -- * @'Free' 'Maybe'@ can be used to model a partiality monad where each layer represents running the computation for a while longer. data Free f a = Pure a | Free (f (Free f a)) instance (Eq (f (Free f a)), Eq a) => Eq (Free f a) where Pure a == Pure b = a == b Free fa == Free fb = fa == fb _ == _ = False instance (Ord (f (Free f a)), Ord a) => Ord (Free f a) where Pure a `compare` Pure b = a `compare` b Pure _ `compare` Free _ = LT Free _ `compare` Pure _ = GT Free fa `compare` Free fb = fa `compare` fb instance (Show (f (Free f a)), Show a) => Show (Free f a) where showsPrec d (Pure a) = showParen (d > 10) $ showString "Pure " . showsPrec 11 a showsPrec d (Free m) = showParen (d > 10) $ showString "Free " . showsPrec 11 m instance (Read (f (Free f a)), Read a) => Read (Free f a) where readsPrec d r = readParen (d > 10) (\r' -> [ (Pure m, t) | ("Pure", s) <- lex r' , (m, t) <- readsPrec 11 s]) r ++ readParen (d > 10) (\r' -> [ (Free m, t) | ("Free", s) <- lex r' , (m, t) <- readsPrec 11 s]) r instance Functor f => Functor (Free f) where fmap f (Pure a) = Pure (f a) fmap f (Free fa) = Free (fmap f <$> fa) instance Functor f => Apply (Free f) where Pure a <.> Pure b = Pure (a b) Pure a <.> Free fb = Free $ fmap a <$> fb Free fa <.> b = Free $ (<.> b) <$> fa instance Functor f => Applicative (Free f) where pure = Pure Pure a <*> Pure b = Pure $ a b Pure a <*> Free mb = Free $ fmap a <$> mb Free ma <*> b = Free $ (<*> b) <$> ma instance Functor f => Bind (Free f) where Pure a >>- f = f a Free m >>- f = Free ((>>- f) <$> m) instance Functor f => Monad (Free f) where return = Pure Pure a >>= f = f a Free m >>= f = Free ((>>= f) <$> m) -- | This violates the Alternative laws, handle with care. instance Alternative v => Alternative (Free v) where empty = Free empty a <|> b = Free (pure a <|> pure b) -- | This violates the MonadPlus laws, handle with care. instance (Functor v, MonadPlus v) => MonadPlus (Free v) where mzero = Free mzero a `mplus` b = Free (return a `mplus` return b) -- | This is not a true monad transformer. It is only a monad transformer \"up to 'retract'\". instance MonadTrans Free where lift = Free . liftM Pure instance Foldable f => Foldable (Free f) where foldMap f (Pure a) = f a foldMap f (Free fa) = foldMap (foldMap f) fa instance Foldable1 f => Foldable1 (Free f) where foldMap1 f (Pure a) = f a foldMap1 f (Free fa) = foldMap1 (foldMap1 f) fa instance Traversable f => Traversable (Free f) where traverse f (Pure a) = Pure <$> f a traverse f (Free fa) = Free <$> traverse (traverse f) fa instance Traversable1 f => Traversable1 (Free f) where traverse1 f (Pure a) = Pure <$> f a traverse1 f (Free fa) = Free <$> traverse1 (traverse1 f) fa instance (Functor m, MonadWriter e m) => MonadWriter e (Free m) where tell = lift . tell listen = lift . listen . retract pass = lift . pass . retract instance (Functor m, MonadReader e m) => MonadReader e (Free m) where ask = lift ask local f = lift . local f . retract instance (Functor m, MonadState s m) => MonadState s (Free m) where get = lift get put s = lift (put s) instance (Functor m, MonadError e m) => MonadError e (Free m) where throwError = lift . throwError catchError as f = lift (catchError (retract as) (retract . f)) instance (Functor m, MonadCont m) => MonadCont (Free m) where callCC f = lift (callCC (retract . f . liftM lift)) -- | A version of 'lift' that can be used with just a 'Functor' for @f@. liftF :: Functor f => f a -> Free f a liftF = Free . fmap Pure instance Functor f => MonadFree f (Free f) where wrap = Free -- | -- 'retract' is the left inverse of 'lift' and 'liftF' -- -- @ -- 'retract' . 'lift' = 'id' -- 'retract' . 'liftF' = 'id' -- @ retract :: Monad f => Free f a -> f a retract (Pure a) = return a retract (Free as) = as >>= retract -- | Tear down a 'Free' 'Monad' using iteration. iter :: Functor f => (f a -> a) -> Free f a -> a iter _ (Pure a) = a iter phi (Free m) = phi (iter phi <$> m) -- | Lift a natural transformation from @f@ to @g@ into a natural transformation from @'FreeT' f@ to @'FreeT' g@. hoistFree :: Functor g => (forall a. f a -> g a) -> Free f b -> Free g b hoistFree _ (Pure a) = Pure a hoistFree f (Free as) = Free (hoistFree f <$> f as) {-# INLINE hoistFree #-} #ifdef GHC_TYPEABLE instance Typeable1 f => Typeable1 (Free f) where typeOf1 t = mkTyConApp freeTyCon [typeOf1 (f t)] where f :: Free f a -> f a f = undefined freeTyCon :: TyCon #if __GLASGOW_HASKELL__ < 704 freeTyCon = mkTyCon "Control.Monad.Free.Free" #else freeTyCon = mkTyCon3 "free" "Control.Monad.Free" "Free" #endif {-# NOINLINE freeTyCon #-} instance ( Typeable1 f, Typeable a , Data a, Data (f (Free f a)) ) => Data (Free f a) where gfoldl f z (Pure a) = z Pure `f` a gfoldl f z (Free as) = z Free `f` as toConstr Pure{} = pureConstr toConstr Free{} = freeConstr gunfold k z c = case constrIndex c of 1 -> k (z Pure) 2 -> k (z Free) _ -> error "gunfold" dataTypeOf _ = freeDataType dataCast1 f = gcast1 f pureConstr, freeConstr :: Constr pureConstr = mkConstr freeDataType "Pure" [] Prefix freeConstr = mkConstr freeDataType "Free" [] Prefix {-# NOINLINE pureConstr #-} {-# NOINLINE freeConstr #-} freeDataType :: DataType freeDataType = mkDataType "Control.Monad.Free.FreeF" [pureConstr, freeConstr] {-# NOINLINE freeDataType #-} #endif