{-# LANGUAGE ConstraintKinds , GADTs , RankNTypes , TypeOperators , FlexibleInstances , MultiParamTypeClasses , UndecidableInstances , ScopedTypeVariables , DeriveFunctor , DeriveFoldable , DeriveTraversable , TemplateHaskell #-} ----------------------------------------------------------------------------- -- | -- Module : Data.Functor.Free -- License : BSD-style (see the file LICENSE) -- -- Maintainer : sjoerd@w3future.com -- Stability : experimental -- Portability : non-portable -- -- A free functor is left adjoint to a forgetful functor. -- In this package the forgetful functor forgets class constraints. ----------------------------------------------------------------------------- module Data.Functor.Free where import Control.Applicative import Control.Comonad import Data.Function import Data.Constraint hiding (Class) import Data.Constraint.Forall import Data.Functor.Identity import Data.Functor.Compose import Data.Foldable (Foldable(..)) import Data.Traversable import Data.Void import Data.Algebra import Data.Algebra.TH import Language.Haskell.TH.Syntax -- | The free functor for class @c@. -- -- @Free c a@ is basically an expression tree with operations from class @c@ -- and variables/placeholders of type @a@, created with `unit`. -- Monadic bind allows you to replace each of these variables with another sub-expression. newtype Free c a = Free { runFree :: forall b. c b => (a -> b) -> b } -- | Derive the instances for the class @c@ of @`Free` c a@ and @`LiftAFree` c f a@. -- -- For example: -- -- @deriveInstances ''Num@ deriveInstances :: Name -> Q [Dec] deriveInstances nm = concat <$> sequenceA [ deriveSignature nm , deriveInstanceWith_skipSignature freeHeader $ return [] , deriveInstanceWith_skipSignature liftAFreeHeader $ return [] ] where freeHeader = return $ ForallT [PlainTV a] [] (AppT c (AppT (AppT free c) (VarT a))) liftAFreeHeader = return $ ForallT [PlainTV f,PlainTV a] [ClassP ''Applicative [VarT f]] (AppT c (AppT (AppT (AppT liftAFree c) (VarT f)) (VarT a))) free = ConT ''Free liftAFree = ConT ''LiftAFree c = ConT nm a = mkName "a" f = mkName "f" -- | `unit` allows you to create `Free c` values, together with the operations from the class @c@. unit :: a -> Free c a unit a = Free $ \k -> k a -- | `rightAdjunct` is the destructor of `Free c` values. rightAdjunct :: c b => (a -> b) -> Free c a -> b rightAdjunct f g = runFree g f rightAdjunctF :: ForallF c f => (a -> f b) -> Free c a -> f b rightAdjunctF = h instF rightAdjunct where h :: ForallF c f => (ForallF c f :- c (f b)) -> (c (f b) => (a -> f b) -> Free c a -> f b) -> (a -> f b) -> Free c a -> f b h (Sub Dict) f = f rightAdjunctT :: ForallT c t => (a -> t f b) -> Free c a -> t f b rightAdjunctT = h instT rightAdjunct where h :: ForallT c t => (ForallT c t :- c (t f b)) -> (c (t f b) => (a -> t f b) -> Free c a -> t f b) -> (a -> t f b) -> Free c a -> t f b h (Sub Dict) f = f -- | @counit = rightAdjunct id@ counit :: c a => Free c a -> a counit = rightAdjunct id -- | @leftAdjunct f = f . unit@ leftAdjunct :: (Free c a -> b) -> a -> b leftAdjunct f = f . unit -- | @transform f as = as >>= f unit@ -- -- @transform f . transform g = transform (g . f)@ transform :: (forall r. c r => (b -> r) -> a -> r) -> Free c a -> Free c b transform t (Free f) = Free (f . t) -- | @unfold f = coproduct (unfold f) unit . f@ -- -- `inL` and `inR` are useful here. For example, the following creates the list @[1..10]@ as a @Free Monoid@: -- -- @unfold (\b -> if b == 0 then mempty else `inL` (b - 1) \<> `inR` b) 10@ unfold :: (b -> Coproduct c b a) -> b -> Free c a unfold f = fix $ \go -> transform (\k -> either (rightAdjunct k . go) k) . f -- | @convert = rightAdjunct pure@ convert :: (c (f a), Applicative f) => Free c a -> f a convert = rightAdjunct pure -- | @convertClosed = rightAdjunct absurd@ convertClosed :: c r => Free c Void -> r convertClosed = rightAdjunct absurd instance Functor (Free c) where fmap f = transform (. f) instance Applicative (Free c) where pure = unit fs <*> as = transform (\k f -> rightAdjunct (k . f) as) fs instance Monad (Free c) where return = unit as >>= f = transform (\k -> rightAdjunct k . f) as instance (ForallF c Identity, ForallF c (Compose (Free c) (Free c))) => Comonad (Free c) where extract = runIdentity . rightAdjunctF Identity duplicate = getCompose . rightAdjunctF (Compose . unit . unit) instance c ~ Class f => Algebra f (Free c a) where algebra fa = Free $ \k -> evaluate (fmap (rightAdjunct k) fa) newtype LiftAFree c f a = LiftAFree { getLiftAFree :: f (Free c a) } instance (Applicative f, c ~ Class s) => Algebra s (LiftAFree c f a) where algebra = LiftAFree . fmap algebra . traverse getLiftAFree instance ForallT c (LiftAFree c) => Foldable (Free c) where foldMap = foldMapDefault instance ForallT c (LiftAFree c) => Traversable (Free c) where traverse f = getLiftAFree . rightAdjunctT (LiftAFree . fmap unit . f) -- * Coproducts -- | Products of @Monoid@s are @Monoid@s themselves. But coproducts of @Monoid@s are not. -- However, the free @Monoid@ applied to the coproduct /is/ a @Monoid@, and it is the coproduct in the category of @Monoid@s. -- This is also called the free product, and generalizes to any algebraic class. type Coproduct c m n = Free c (Either m n) coproduct :: c r => (m -> r) -> (n -> r) -> Coproduct c m n -> r coproduct m n = rightAdjunct (either m n) inL :: m -> Coproduct c m n inL = unit . Left inR :: n -> Coproduct c m n inR = unit . Right type InitialObject c = Free c Void initial :: c r => InitialObject c -> r initial = rightAdjunct absurd