-- | -- Module : Data.VectorSpace.Free.FiniteSupportedSequence -- Copyright : (c) Justus Sagemüller 2016 -- License : GPL v3 -- -- Maintainer : (@) sagemueller $ geo.uni-koeln.de -- Stability : experimental -- Portability : portable -- {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE FlexibleInstances #-} {-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE CPP #-} {-# LANGUAGE ConstrainedClassMethods #-} {-# LANGUAGE MultiWayIf #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE UnicodeSyntax #-} module Data.VectorSpace.Free.FiniteSupportedSequence ( FinSuppSeq (..) , SparseSuppSeq (..) , SemisparseSuppSeq (..) ) where import Data.AffineSpace import Data.VectorSpace import Data.VectorSpace.Free.Class import Data.Basis import qualified Data.Foldable as Foldable import qualified Data.Vector.Generic as Arr import qualified Data.Vector.Unboxed as UArr import qualified Data.Vector.Generic.Mutable as MArr import GHC.Exts (IsList(..)) import Control.Arrow (first, second) import Control.Monad (forM_) -- | The space of finitely-supported sequences is an /infinite/-dimensional space. -- An vector of length /l/ is here understood as an infinite sequence that begins -- with /l/ nonzero values, and continues with infinite zeroes. -- -- You may also consider this as the type that languages like Octave/Matlab -- (as well as Haskell's library) -- approximate with their “vectors”, with one important difference: there is -- no such thing as a dimensional-mismatch error, since we consider all these vectors -- as elements of the same infinite-dimensional space. Adding two different-size -- vectors will simply zero-pad the shorter, and unlike in Matlab this behaviour extends -- consequently to matrix multiplication etc. (defined in -- ) -- -- Of course it /can/ make sense to constrain the dimension, but for this the -- type system should be used, not runtime checks. -- -- (This is the same -- behaviour that the library -- gives to the standard list and vector types, but the problem there is that it -- can't use unboxed arrays as these are not functors, but unboxing is crucial for -- performance.) newtype FinSuppSeq n = FinSuppSeq { getFiniteSeq :: UArr.Vector n } {-# INLINE liftU2FSS #-} liftU2FSS :: UArr.Unbox n => (n -> n -> n) -> FinSuppSeq n -> FinSuppSeq n -> FinSuppSeq n -- Adapted from: -- http://hackage.haskell.org/package/linear-1.20.5/docs/src/Linear.Vector.html#line-200 liftU2FSS f (FinSuppSeq u) (FinSuppSeq v) = FinSuppSeq $ case compare lu lv of LT | lu == 0 -> v | otherwise -> UArr.modify (\ w -> Foldable.forM_ [0..lu-1] $ \i -> MArr.unsafeWrite w i $ f (UArr.unsafeIndex u i) (UArr.unsafeIndex v i)) v EQ -> UArr.zipWith f u v GT | lv == 0 -> u | otherwise -> UArr.modify (\ w -> Foldable.forM_ [0..lv-1] $ \i -> MArr.unsafeWrite w i $ f (UArr.unsafeIndex u i) (UArr.unsafeIndex v i)) u where lu = UArr.length u lv = UArr.length v instance (Num n, UArr.Unbox n) => AffineSpace (FinSuppSeq n) where type Diff (FinSuppSeq n) = FinSuppSeq n (.-.) = (^-^) (.+^) = (^+^) instance (Num n, UArr.Unbox n) => AdditiveGroup (FinSuppSeq n) where zeroV = FinSuppSeq $ UArr.empty (^+^) = liftU2FSS (+) negateV (FinSuppSeq v) = FinSuppSeq $ UArr.map negate v instance (Num n, UArr.Unbox n) => VectorSpace (FinSuppSeq n) where type Scalar (FinSuppSeq n) = n μ*^FinSuppSeq v = FinSuppSeq $ UArr.map (μ*) v instance (Num n, AdditiveGroup n, UArr.Unbox n) => FreeVectorSpace (FinSuppSeq n) where FinSuppSeq v^*^FinSuppSeq w = FinSuppSeq (UArr.zipWith (*) v w) vmap f (FinSuppSeq v) = FinSuppSeq $ UArr.map f v instance (Num n, AdditiveGroup n, UArr.Unbox n) => InnerSpace (FinSuppSeq n) where FinSuppSeq v<.>FinSuppSeq w = UArr.sum (UArr.zipWith (*) v w) instance (Num n, UArr.Unbox n) => HasBasis (FinSuppSeq n) where type Basis (FinSuppSeq n) = Int basisValue i = FinSuppSeq $ UArr.replicate i 0 `UArr.snoc` 1 decompose = zip [0..] . toList decompose' (FinSuppSeq v) i = maybe 0 id $ v UArr.!? i instance UArr.Unbox n => IsList (FinSuppSeq n) where type Item (FinSuppSeq n) = n fromListN l = FinSuppSeq . fromListN l fromList = FinSuppSeq . fromList toList = toList . getFiniteSeq instance (UArr.Unbox n, Show n) => Show (FinSuppSeq n) where show = ("fromList "++) . show . toList -- | Sparsely supported sequences (what other languages would call /sparse vectors/) -- are sequences consisting of lots of zeroes, with finitely many -- nonzeroes scattered around. Only these nonzero elements are stored. data SparseSuppSeq n = SparseSuppSeq { sparseNonzeroes :: UArr.Vector (Int,n) } instance (Num n, UArr.Unbox n) => AffineSpace (SparseSuppSeq n) where type Diff (SparseSuppSeq n) = SparseSuppSeq n (.-.) = (^-^) (.+^) = (^+^) instance (Num n, UArr.Unbox n) => AdditiveGroup (SparseSuppSeq n) where zeroV = SparseSuppSeq $ UArr.empty SparseSuppSeq u ^+^ SparseSuppSeq v = SparseSuppSeq w where w = Arr.unfoldrN (Arr.length u + Arr.length v) seekws (0,0) seekws (pu,pv) = case (u Arr.!? pu, v Arr.!? pv) of (Just (ju,uj), Just (jv,vj)) -> if | ju>jv -> Just ((jv, vj), (pu, pv+1)) | ju Just ((ju, uj), (pu+1, pv)) | otherwise -> Just ((ju, uj+vj), (pu+1, pv+1)) (Just (ju,uj), Nothing) -> Just ((ju, uj), (pu+1, pv)) (Nothing, Just (jv,vj)) -> Just ((jv, vj), (pu, pv+1)) (Nothing, Nothing) -> Nothing negateV (SparseSuppSeq v) = SparseSuppSeq $ Arr.map (second negate) v instance (Num n, UArr.Unbox n) => VectorSpace (SparseSuppSeq n) where type Scalar (SparseSuppSeq n) = n μ *^ SparseSuppSeq v = SparseSuppSeq $ Arr.map (second (*μ)) v instance (Num n, UArr.Unbox n) => FreeVectorSpace (SparseSuppSeq n) where SparseSuppSeq u ^*^ SparseSuppSeq v = SparseSuppSeq w where w = Arr.unfoldrN (Arr.length u `min` Arr.length v) seekws (0,0) seekws (pu,pv) = case (u Arr.!? pu, v Arr.!? pv) of (Just (ju,uj), Just (jv,vj)) -> if | ju>jv -> seekws (pu, pv+1) | ju seekws (pu+1, pv) | otherwise -> Just ((ju, uj*vj), (pu+1, pv+1)) _ -> Nothing vmap f (SparseSuppSeq v) = SparseSuppSeq $ Arr.map (second f) v instance (Num n, AdditiveGroup n, UArr.Unbox n) => InnerSpace (SparseSuppSeq n) where v <.> w = case v ^*^ w of SparseSuppSeq vw -> Arr.foldl' (\acc (_,q) -> acc+q) 0 vw instance (Num n, UArr.Unbox n) => HasBasis (SparseSuppSeq n) where type Basis (SparseSuppSeq n) = Int basisValue i = SparseSuppSeq $ UArr.singleton (i,1) decompose (SparseSuppSeq v) = UArr.toList v decompose' (SparseSuppSeq v) i = goBisect 0 (Arr.length v) where goBisect jb jt | jb==jt = 0 | otherwise = case first (`compare`i) $ v Arr.! jm of (LT,_) -> goBisect (jm+1) jt (EQ,q) -> q (GT,_) -> goBisect jb jm where jm = (jb+jt)`div`2 instance (UArr.Unbox n, Eq n, Num n) => IsList (SparseSuppSeq n) where type Item (SparseSuppSeq n) = n fromListN n xs = SparseSuppSeq $ Arr.unfoldrN n go (0,xs) where go (_,[]) = Nothing go (j,0:xs) = go (j+1,xs) go (j,x:xs) = Just ((j,x), (j+1,xs)) fromList l = fromListN (length l) l toList (SparseSuppSeq xs) = go 0 0 where go i j = case xs Arr.!? j of Just (i',x) | i==i' -> x : go (i+1) (j+1) Nothing -> [] _ -> 0 : go (i+1) j -- | Like 'SparseSuppSeq', this type of number-sequence ignores zeroes and only stores -- nonzero elements with positional information, but it does this not for every single -- entry separately: only the first position of each contiguous /chunk/ of nonzeroes -- is tracked. It is thus more suited for vectors that are in some places dense -- but still have lots of zeroes. -- -- The drawback is that random access (i.e. 'decompose'') has complexity 𝓞(𝑛) -- – instead of 𝓞(1) for 'FinSuppSeq', or 𝓞(log 𝑛) for 'SparseSuppSeq' – -- so this type should only be used for “abstract vector operations”. data SemisparseSuppSeq n = SemisparseSuppSeq { chunkSparseNonzeroes :: UArr.Vector n , sparseNonzeroLocation :: UArr.Vector (Int, Int) -- ^ Start index of block, -- size of block of consecutive nonzeroes } asSemisparse :: UArr.Unbox n => SparseSuppSeq n -> SemisparseSuppSeq n asSemisparse (SparseSuppSeq v) = SemisparseSuppSeq (Arr.map snd v) $ Arr.unfoldrN (Arr.length v) mkIndex 0 where mkIndex :: Int -> Maybe ((Int, Int), Int) mkIndex i | Just (j,_) <- v Arr.!? i = case mkIndex $ i+1 of Just ((j',l),n) | j'==j+1 -> Just ((j,l+1), n) _ -> Just ((j,1), i+1) | otherwise = Nothing fromSemisparse :: ∀ n . UArr.Unbox n => SemisparseSuppSeq n -> SparseSuppSeq n fromSemisparse (SemisparseSuppSeq v ssIx) = SparseSuppSeq . (`Arr.zip`v) $ Arr.create (do ix <- MArr.new $ Arr.length v Arr.foldM_ (\i (j,l) -> do forM_ [0..l-1] -- TODO: faster loop and unsafeWrite $ \k -> MArr.write ix (i+k) (j+k) return $ i+l ) 0 ssIx return ix ) instance (Num n, UArr.Unbox n) => AffineSpace (SemisparseSuppSeq n) where type Diff (SemisparseSuppSeq n) = SemisparseSuppSeq n (.-.) = (^-^) (.+^) = (^+^) instance (Num n, UArr.Unbox n) => AdditiveGroup (SemisparseSuppSeq n) where zeroV = SemisparseSuppSeq UArr.empty UArr.empty u ^+^ v = -- TODO: faster, direct implementation asSemisparse $ fromSemisparse u ^+^ fromSemisparse v negateV (SemisparseSuppSeq v vis) = SemisparseSuppSeq (Arr.map negate v) vis instance (Num n, UArr.Unbox n) => VectorSpace (SemisparseSuppSeq n) where type Scalar (SemisparseSuppSeq n) = n μ *^ SemisparseSuppSeq v ix = SemisparseSuppSeq (Arr.map (μ*) v) ix instance (Num n, UArr.Unbox n) => FreeVectorSpace (SemisparseSuppSeq n) where u ^*^ v = -- TODO: faster, direct implementation asSemisparse $ fromSemisparse u ^*^ fromSemisparse v vmap f (SemisparseSuppSeq v ix) = SemisparseSuppSeq (Arr.map f v) ix instance (Num n, AdditiveGroup n, UArr.Unbox n) => InnerSpace (SemisparseSuppSeq n) where v <.> w = fromSemisparse v <.> fromSemisparse w instance (Num n, UArr.Unbox n) => HasBasis (SemisparseSuppSeq n) where type Basis (SemisparseSuppSeq n) = Int basisValue i = SemisparseSuppSeq (UArr.singleton 1) (UArr.singleton (i,1)) decompose = decompose . fromSemisparse decompose' v = decompose' $ fromSemisparse v instance (UArr.Unbox n, Eq n, Num n) => IsList (SemisparseSuppSeq n) where type Item (SemisparseSuppSeq n) = n fromListN n = asSemisparse . fromListN n fromList = asSemisparse . fromList toList = toList . fromSemisparse