-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Depth-typed functor-based trees, both top-down and bottom-up -- @package ftree @version 0.1.2 -- | Top-down, depth-typed functor trees. In other words, right-associated -- n-ary functor composition. See -- http://conal.net/blog/posts/a-trie-for-length-typed-vectors/. module Data.FTree.BottomUp data T :: (* -> *) -> * -> (* -> *) L :: a -> T f Z a B :: T f n (f a) -> T f (S n) a type (:^) = T unL :: (f :^ Z) a -> a unB :: (f :^ S n) a -> (f :^ n) (f a) foldT :: Functor f => (a -> z) -> (f a -> a) -> (f :^ n) a -> z inT :: (a -> b) -> (forall n. IsNat n => (f :^ n) (f a) -> (f :^ n) (f b)) -> (forall n. (f :^ n) a -> (f :^ n) b) inT2 :: (a -> b -> c) -> (forall n. IsNat n => (f :^ n) (f a) -> (f :^ n) (f b) -> (f :^ n) (f c)) -> (forall n. (f :^ n) a -> (f :^ n) b -> (f :^ n) c) inL :: (a -> b) -> ((f :^ Z) a -> (f :^ Z) b) inB :: ((f :^ n) (f a) -> (f :^ n) (f b)) -> ((f :^ (S n)) a -> (f :^ (S n)) b) inL2 :: (a -> b -> c) -> ((f :^ Z) a -> (f :^ Z) b -> (f :^ Z) c) inB2 :: ((f :^ n) (f a) -> (f :^ n) (f b) -> (f :^ n) (f c)) -> ((f :^ (S n)) a -> (f :^ (S n)) b -> (f :^ (S n)) c) instance (Foldable f, Applicative f, IsNat n, Ord a) => Ord ((:^) f n a) instance (Foldable f, Applicative f, IsNat n, Eq a) => Eq ((:^) f n a) instance (IsNat n, Applicative f, Monoid m) => Monoid ((:^) f n m) instance Traversable f => Traversable (f :^ n) instance (Functor f, Foldable f) => Foldable (f :^ n) instance (IsNat n, Applicative f) => Applicative (f :^ n) instance Functor f => Functor (f :^ n) instance (Functor f, ShowF f) => ShowF (f :^ n) instance (Functor f, ShowF f, Show a) => Show ((:^) f n a) -- | Top-down, depth-typed functor trees. In other words, right-associated -- n-ary functor composition. See -- http://conal.net/blog/posts/a-trie-for-length-typed-vectors/. module Data.FTree.TopDown data T :: (* -> *) -> * -> (* -> *) L :: a -> T f Z a B :: f (T f n a) -> T f (S n) a type (:^) = T unL :: (f :^ Z) a -> a unB :: (f :^ S n) a -> f ((f :^ n) a) foldT :: Functor f => (a -> z) -> (f z -> z) -> (f :^ n) a -> z inT :: (a -> b) -> (forall n. IsNat n => f ((f :^ n) a) -> f ((f :^ n) b)) -> (forall n. (f :^ n) a -> (f :^ n) b) inT2 :: (a -> b -> c) -> (forall n. IsNat n => f ((f :^ n) a) -> f ((f :^ n) b) -> f ((f :^ n) c)) -> (forall n. (f :^ n) a -> (f :^ n) b -> (f :^ n) c) inL :: (a -> b) -> ((f :^ Z) a -> (f :^ Z) b) inB :: (f ((f :^ n) a) -> f ((f :^ n) b)) -> ((f :^ (S n)) a -> (f :^ (S n)) b) inL2 :: (a -> b -> c) -> ((f :^ Z) a -> (f :^ Z) b -> (f :^ Z) c) inB2 :: (f ((f :^ n) a) -> f ((f :^ n) b) -> f ((f :^ n) c)) -> ((f :^ (S n)) a -> (f :^ (S n)) b -> (f :^ (S n)) c) instance (Foldable f, Applicative f, IsNat n, Ord a) => Ord ((:^) f n a) instance (Foldable f, Applicative f, IsNat n, Eq a) => Eq ((:^) f n a) instance (IsNat n, Applicative f, Monoid m) => Monoid ((:^) f n m) instance Traversable f => Traversable (f :^ n) instance (Functor f, Foldable f) => Foldable (f :^ n) instance (IsNat n, Applicative f) => Applicative (f :^ n) instance Functor f => Functor (f :^ n) instance ShowF f => ShowF (f :^ n) instance (ShowF f, Show a) => Show ((:^) f n a)