-- Hoogle documentation, generated by Haddock -- See Hoogle, http://www.haskell.org/hoogle/ -- | Depth-typed functor-based trees, both top-down and bottom-up -- -- Depth-typed functor-based trees, both top-down and bottom-up @package ftree @version 0.1.5 -- | Top-down, depth-typed functor trees. In other words, right-associated -- n-ary functor composition. See -- http://conal.net/blog/posts/a-trie-for-length-typed-vectors/. module Data.FTree.BottomUp data T :: (* -> *) -> * -> (* -> *) [L] :: a -> T f Z a [B] :: IsNat n => T f n (f a) -> T f (S n) a type (:^) = T unL :: (f :^ Z) a -> a unB :: (f :^ S n) a -> (f :^ n) (f a) foldT :: forall f n a z. Functor f => (a -> z) -> (f a -> a) -> (f :^ n) a -> z -- | Operate inside the representation of `f :^ n` to make another, -- preserving depth. inT :: (a -> b) -> (forall n. IsNat n => (f :^ n) (f a) -> (f :^ n) (f b)) -> forall n. (f :^ n) a -> (f :^ n) b -- | Operate inside the representation of two `f :^ n` to make another, -- preserving depth. inT2 :: (a -> b -> c) -> (forall n. IsNat n => (f :^ n) (f a) -> (f :^ n) (f b) -> (f :^ n) (f c)) -> forall n. (f :^ n) a -> (f :^ n) b -> (f :^ n) c inL :: (a -> b) -> (f :^ Z) a -> (f :^ Z) b inB :: ((f :^ n) (f a) -> (f :^ n) (f b)) -> (f :^ S n) a -> (f :^ S n) b inL2 :: (a -> b -> c) -> (f :^ Z) a -> (f :^ Z) b -> (f :^ Z) c inB2 :: ((f :^ n) (f a) -> (f :^ n) (f b) -> (f :^ n) (f c)) -> (f :^ S n) a -> (f :^ S n) b -> (f :^ S n) c instance (GHC.Base.Functor f, Text.ShowF.ShowF f, GHC.Show.Show a) => GHC.Show.Show ((Data.FTree.BottomUp.:^) f n a) instance (GHC.Base.Functor f, Text.ShowF.ShowF f) => Text.ShowF.ShowF (f Data.FTree.BottomUp.:^ n) instance GHC.Base.Functor f => GHC.Base.Functor (f Data.FTree.BottomUp.:^ n) instance (TypeUnary.Nat.IsNat n, GHC.Base.Applicative f) => GHC.Base.Applicative (f Data.FTree.BottomUp.:^ n) instance (GHC.Base.Functor f, Data.Foldable.Foldable f) => Data.Foldable.Foldable (f Data.FTree.BottomUp.:^ n) instance Data.Traversable.Traversable f => Data.Traversable.Traversable (f Data.FTree.BottomUp.:^ n) instance (TypeUnary.Nat.IsNat n, GHC.Base.Applicative f, GHC.Base.Semigroup m) => GHC.Base.Semigroup ((Data.FTree.BottomUp.:^) f n m) instance (TypeUnary.Nat.IsNat n, GHC.Base.Applicative f, GHC.Base.Monoid m) => GHC.Base.Monoid ((Data.FTree.BottomUp.:^) f n m) instance (Data.Foldable.Foldable f, GHC.Base.Applicative f, TypeUnary.Nat.IsNat n, GHC.Classes.Eq a) => GHC.Classes.Eq ((Data.FTree.BottomUp.:^) f n a) instance (Data.Foldable.Foldable f, GHC.Base.Applicative f, TypeUnary.Nat.IsNat n, GHC.Classes.Ord a) => GHC.Classes.Ord ((Data.FTree.BottomUp.:^) f n a) -- | Top-down, depth-typed functor trees. In other words, right-associated -- n-ary functor composition. See -- http://conal.net/blog/posts/a-trie-for-length-typed-vectors/. module Data.FTree.TopDown data T :: (* -> *) -> * -> (* -> *) [L] :: a -> T f Z a [B] :: IsNat n => f (T f n a) -> T f (S n) a type (:^) = T unL :: (f :^ Z) a -> a unB :: (f :^ S n) a -> f ((f :^ n) a) foldT :: forall f n a z. Functor f => (a -> z) -> (f z -> z) -> (f :^ n) a -> z -- | Operate inside the representation of `f :^ n` to make another, -- preserving depth. inT :: (a -> b) -> (forall n. IsNat n => f ((f :^ n) a) -> f ((f :^ n) b)) -> forall n. (f :^ n) a -> (f :^ n) b -- | Operate inside the representation of two `f :^ n` to make another, -- preserving depth. inT2 :: (a -> b -> c) -> (forall n. IsNat n => f ((f :^ n) a) -> f ((f :^ n) b) -> f ((f :^ n) c)) -> forall n. (f :^ n) a -> (f :^ n) b -> (f :^ n) c inL :: (a -> b) -> (f :^ Z) a -> (f :^ Z) b inB :: (f ((f :^ n) a) -> f ((f :^ n) b)) -> (f :^ S n) a -> (f :^ S n) b inL2 :: (a -> b -> c) -> (f :^ Z) a -> (f :^ Z) b -> (f :^ Z) c inB2 :: (f ((f :^ n) a) -> f ((f :^ n) b) -> f ((f :^ n) c)) -> (f :^ S n) a -> (f :^ S n) b -> (f :^ S n) c instance (Text.ShowF.ShowF f, GHC.Show.Show a) => GHC.Show.Show ((Data.FTree.TopDown.:^) f n a) instance Text.ShowF.ShowF f => Text.ShowF.ShowF (f Data.FTree.TopDown.:^ n) instance GHC.Base.Functor f => GHC.Base.Functor (f Data.FTree.TopDown.:^ n) instance (TypeUnary.Nat.IsNat n, GHC.Base.Applicative f) => GHC.Base.Applicative (f Data.FTree.TopDown.:^ n) instance (GHC.Base.Functor f, Data.Foldable.Foldable f) => Data.Foldable.Foldable (f Data.FTree.TopDown.:^ n) instance Data.Traversable.Traversable f => Data.Traversable.Traversable (f Data.FTree.TopDown.:^ n) instance (TypeUnary.Nat.IsNat n, GHC.Base.Applicative f, GHC.Base.Semigroup m) => GHC.Base.Semigroup ((Data.FTree.TopDown.:^) f n m) instance (TypeUnary.Nat.IsNat n, GHC.Base.Applicative f, GHC.Base.Monoid m) => GHC.Base.Monoid ((Data.FTree.TopDown.:^) f n m) instance (Data.Foldable.Foldable f, GHC.Base.Applicative f, TypeUnary.Nat.IsNat n, GHC.Classes.Eq a) => GHC.Classes.Eq ((Data.FTree.TopDown.:^) f n a) instance (Data.Foldable.Foldable f, GHC.Base.Applicative f, TypeUnary.Nat.IsNat n, GHC.Classes.Ord a) => GHC.Classes.Ord ((Data.FTree.TopDown.:^) f n a)