module Data.HFunctor.Chain.Internal ( Chain1(..) , foldChain1, unfoldChain1 , toChain1, injectChain1 , matchChain1 , Chain(..) , foldChain, unfoldChain , splittingChain, unconsChain , DayChain1(..) , DayChain(..) , NightChain(..) , NightChain1(..) ) where import Control.Natural import Control.Natural.IsoF import Data.Functor.Classes import Data.Functor.Contravariant import Data.Functor.Identity import Data.Functor.Invariant import Data.HBifunctor import Data.HFunctor import Data.Kind import Data.Typeable import Data.Void import GHC.Generics import qualified Data.Functor.Invariant.Day as ID import qualified Data.Functor.Invariant.Night as IN -- | A useful construction that works like a "non-empty linked list" of @t -- f@ applied to itself multiple times. That is, it contains @t f f@, @t -- f (t f f)@, @t f (t f (t f f))@, etc, with @f@ occuring /one or more/ -- times. It is meant to be the same as @'NonEmptyBy' t@. -- -- A @'Chain1' t f a@ is explicitly one of: -- -- * @f a@ -- * @t f f a@ -- * @t f (t f f) a@ -- * @t f (t f (t f f)) a@ -- * .. etc -- -- Note that this is exactly the description of @'NonEmptyBy' t@. And that's "the -- point": for all instances of 'Associative', @'Chain1' t@ is -- isomorphic to @'NonEmptyBy' t@ (witnessed by 'unrollingNE'). That's big picture -- of 'NonEmptyBy': it's supposed to be a type that consists of all possible -- self-applications of @f@ to @t@. -- -- 'Chain1' gives you a way to work with all @'NonEmptyBy' t@ in a uniform way. -- Unlike for @'NonEmptyBy' t f@ in general, you can always explicitly /pattern -- match/ on a 'Chain1' (with its two constructors) and do what you please -- with it. You can also /construct/ 'Chain1' using normal constructors -- and functions. -- -- You can convert in between @'NonEmptyBy' t f@ and @'Chain1' t f@ with 'unrollNE' -- and 'rerollNE'. You can fully "collapse" a @'Chain1' t f@ into an @f@ -- with 'retract', if you have @'SemigroupIn' t f@; this could be considered -- a fundamental property of semigroup-ness. -- -- See 'Chain' for a version that has an "empty" value. -- -- Another way of thinking of this is that @'Chain1' t@ is the "free -- @'SemigroupIn' t@". Given any functor @f@, @'Chain1' t f@ is -- a semigroup in the semigroupoidal category of endofunctors enriched by -- @t@. So, @'Chain1' 'Control.Monad.Freer.Church.Comp'@ is the "free -- 'Data.Functor.Bind.Bind'", @'Chain1' 'Day'@ is the "free -- 'Data.Functor.Apply.Apply'", etc. You "lift" from @f a@ to @'Chain1' -- t f a@ using 'inject'. -- -- Note: this instance doesn't exist directly because of restrictions in -- typeclasses, but is implemented as -- -- @ -- 'Associative' t => 'SemigroupIn' ('WrapHBF' t) ('Chain1' t f) -- @ -- -- where 'biretract' is 'appendChain1'. -- -- You can fully "collapse" a @'Chain' t i f@ into an @f@ with -- 'retract', if you have @'MonoidIn' t i f@; this could be considered -- a fundamental property of monoid-ness. -- -- -- This construction is inspired by iteratees and machines. data Chain1 t f a = Done1 (f a) | More1 (t f (Chain1 t f) a) deriving (Typeable, Generic) deriving instance (Eq (f a), Eq (t f (Chain1 t f) a)) => Eq (Chain1 t f a) deriving instance (Ord (f a), Ord (t f (Chain1 t f) a)) => Ord (Chain1 t f a) deriving instance (Show (f a), Show (t f (Chain1 t f) a)) => Show (Chain1 t f a) deriving instance (Read (f a), Read (t f (Chain1 t f) a)) => Read (Chain1 t f a) deriving instance (Functor f, Functor (t f (Chain1 t f))) => Functor (Chain1 t f) deriving instance (Foldable f, Foldable (t f (Chain1 t f))) => Foldable (Chain1 t f) deriving instance (Traversable f, Traversable (t f (Chain1 t f))) => Traversable (Chain1 t f) instance (Eq1 f, Eq1 (t f (Chain1 t f))) => Eq1 (Chain1 t f) where liftEq eq = \case Done1 x -> \case Done1 y -> liftEq eq x y More1 _ -> False More1 x -> \case Done1 _ -> False More1 y -> liftEq eq x y instance (Ord1 f, Ord1 (t f (Chain1 t f))) => Ord1 (Chain1 t f) where liftCompare c = \case Done1 x -> \case Done1 y -> liftCompare c x y More1 _ -> LT More1 x -> \case Done1 _ -> GT More1 y -> liftCompare c x y instance (Show1 (t f (Chain1 t f)), Show1 f) => Show1 (Chain1 t f) where liftShowsPrec sp sl d = \case Done1 x -> showsUnaryWith (liftShowsPrec sp sl) "Done1" d x More1 xs -> showsUnaryWith (liftShowsPrec sp sl) "More1" d xs instance (Functor f, Read1 (t f (Chain1 t f)), Read1 f) => Read1 (Chain1 t f) where liftReadsPrec rp rl = readsData $ readsUnaryWith (liftReadsPrec rp rl) "Done1" Done1 <> readsUnaryWith (liftReadsPrec rp rl) "More1" More1 -- | @since 0.3.0.0 instance (Contravariant f, Contravariant (t f (Chain1 t f))) => Contravariant (Chain1 t f) where contramap f = \case Done1 x -> Done1 (contramap f x ) More1 xs -> More1 (contramap f xs) -- | @since 0.3.0.0 instance (Invariant f, Invariant (t f (Chain1 t f))) => Invariant (Chain1 t f) where invmap f g = \case Done1 x -> Done1 (invmap f g x ) More1 xs -> More1 (invmap f g xs) instance HBifunctor t => HFunctor (Chain1 t) where hmap f = foldChain1 (Done1 . f) (More1 . hleft f) instance HBifunctor t => Inject (Chain1 t) where inject = injectChain1 -- | Recursively fold down a 'Chain1'. Provide a function on how to handle -- the "single @f@ case" ('inject'), and how to handle the "combined @t -- f g@ case", and this will fold the entire @'Chain1' t f@ into a single -- @g@. -- -- This is a catamorphism. foldChain1 :: forall t f g. HBifunctor t => f ~> g -- ^ handle 'Done1' -> t f g ~> g -- ^ handle 'More1' -> Chain1 t f ~> g foldChain1 f g = go where go :: Chain1 t f ~> g go = \case Done1 x -> f x More1 xs -> g (hright go xs) -- | Recursively build up a 'Chain1'. Provide a function that takes some -- starting seed @g@ and returns either "done" (@f@) or "continue further" -- (@t f g@), and it will create a @'Chain1' t f@ from a @g@. -- -- This is an anamorphism. unfoldChain1 :: forall t f (g :: Type -> Type). HBifunctor t => (g ~> f :+: t f g) -> g ~> Chain1 t f unfoldChain1 f = go where go :: g ~> Chain1 t f go = (\case L1 x -> Done1 x; R1 y -> More1 (hright go y)) . f -- | Convert a tensor value pairing two @f@s into a two-item 'Chain1'. An -- analogue of 'toNonEmptyBy'. -- -- @since 0.3.1.0 toChain1 :: HBifunctor t => t f f ~> Chain1 t f toChain1 = More1 . hright Done1 -- | Create a singleton 'Chain1'. -- -- @since 0.3.0.0 injectChain1 :: f ~> Chain1 t f injectChain1 = Done1 -- | For completeness, an isomorphism between 'Chain1' and its two -- constructors, to match 'matchNE'. -- -- @since 0.3.0.0 matchChain1 :: Chain1 t f ~> (f :+: t f (Chain1 t f)) matchChain1 = \case Done1 x -> L1 x More1 xs -> R1 xs -- | A useful construction that works like a "linked list" of @t f@ applied -- to itself multiple times. That is, it contains @t f f@, @t f (t f f)@, -- @t f (t f (t f f))@, etc, with @f@ occuring /zero or more/ times. It is -- meant to be the same as @'ListBy' t@. -- -- If @t@ is 'Tensor', then it means we can "collapse" this linked list -- into some final type @'ListBy' t@ ('reroll'), and also extract it back -- into a linked list ('unroll'). -- -- So, a value of type @'Chain' t i f a@ is one of either: -- -- * @i a@ -- * @f a@ -- * @t f f a@ -- * @t f (t f f) a@ -- * @t f (t f (t f f)) a@ -- * .. etc. -- -- Note that this is /exactly/ what an @'ListBy' t@ is supposed to be. Using -- 'Chain' allows us to work with all @'ListBy' t@s in a uniform way, with -- normal pattern matching and normal constructors. -- -- You can fully "collapse" a @'Chain' t i f@ into an @f@ with -- 'retract', if you have @'MonoidIn' t i f@; this could be considered -- a fundamental property of monoid-ness. -- -- Another way of thinking of this is that @'Chain' t i@ is the "free -- @'MonoidIn' t i@". Given any functor @f@, @'Chain' t i f@ is a monoid -- in the monoidal category of endofunctors enriched by @t@. So, @'Chain' -- 'Control.Monad.Freer.Church.Comp' 'Data.Functor.Identity.Identity'@ is -- the "free 'Monad'", @'Chain' 'Data.Functor.Day.Day' -- 'Data.Functor.Identity.Identity'@ is the "free 'Applicative'", etc. You -- "lift" from @f a@ to @'Chain' t i f a@ using 'inject'. -- -- Note: this instance doesn't exist directly because of restrictions in -- typeclasses, but is implemented as -- -- @ -- 'Tensor' t i => 'MonoidIn' ('WrapHBF' t) ('WrapF' i) ('Chain' t i f) -- @ -- -- where 'pureT' is 'Done' and 'biretract' is 'appendChain'. -- -- This construction is inspired by -- data Chain t i f a = Done (i a) | More (t f (Chain t i f) a) deriving instance (Eq (i a), Eq (t f (Chain t i f) a)) => Eq (Chain t i f a) deriving instance (Ord (i a), Ord (t f (Chain t i f) a)) => Ord (Chain t i f a) deriving instance (Show (i a), Show (t f (Chain t i f) a)) => Show (Chain t i f a) deriving instance (Read (i a), Read (t f (Chain t i f) a)) => Read (Chain t i f a) deriving instance (Functor i, Functor (t f (Chain t i f))) => Functor (Chain t i f) deriving instance (Foldable i, Foldable (t f (Chain t i f))) => Foldable (Chain t i f) deriving instance (Traversable i, Traversable (t f (Chain t i f))) => Traversable (Chain t i f) instance (Eq1 i, Eq1 (t f (Chain t i f))) => Eq1 (Chain t i f) where liftEq eq = \case Done x -> \case Done y -> liftEq eq x y More _ -> False More x -> \case Done _ -> False More y -> liftEq eq x y instance (Ord1 i, Ord1 (t f (Chain t i f))) => Ord1 (Chain t i f) where liftCompare c = \case Done x -> \case Done y -> liftCompare c x y More _ -> LT More x -> \case Done _ -> GT More y -> liftCompare c x y instance (Show1 (t f (Chain t i f)), Show1 i) => Show1 (Chain t i f) where liftShowsPrec sp sl d = \case Done x -> showsUnaryWith (liftShowsPrec sp sl) "Done" d x More xs -> showsUnaryWith (liftShowsPrec sp sl) "More" d xs instance (Functor i, Read1 (t f (Chain t i f)), Read1 i) => Read1 (Chain t i f) where liftReadsPrec rp rl = readsData $ readsUnaryWith (liftReadsPrec rp rl) "Done" Done <> readsUnaryWith (liftReadsPrec rp rl) "More" More instance (Contravariant i, Contravariant (t f (Chain t i f))) => Contravariant (Chain t i f) where contramap f = \case Done x -> Done (contramap f x ) More xs -> More (contramap f xs) instance (Invariant i, Invariant (t f (Chain t i f))) => Invariant (Chain t i f) where invmap f g = \case Done x -> Done (invmap f g x ) More xs -> More (invmap f g xs) instance HBifunctor t => HFunctor (Chain t i) where hmap f = foldChain Done (More . hleft f) -- | Recursively fold down a 'Chain'. Provide a function on how to handle -- the "single @f@ case" ('nilLB'), and how to handle the "combined @t f g@ -- case", and this will fold the entire @'Chain' t i) f@ into a single @g@. -- -- This is a catamorphism. foldChain :: forall t i f g. HBifunctor t => (i ~> g) -- ^ Handle 'Done' -> (t f g ~> g) -- ^ Handle 'More' -> Chain t i f ~> g foldChain f g = go where go :: Chain t i f ~> g go = \case Done x -> f x More xs -> g (hright go xs) -- | Recursively build up a 'Chain'. Provide a function that takes some -- starting seed @g@ and returns either "done" (@i@) or "continue further" -- (@t f g@), and it will create a @'Chain' t i f@ from a @g@. -- -- This is an anamorphism. unfoldChain :: forall t f (g :: Type -> Type) i. HBifunctor t => (g ~> i :+: t f g) -> g ~> Chain t i f unfoldChain f = go where go :: g a -> Chain t i f a go = (\case L1 x -> Done x; R1 y -> More (hright go y)) . f -- | For completeness, an isomorphism between 'Chain' and its two -- constructors, to match 'splittingLB'. -- -- @since 0.3.0.0 splittingChain :: Chain t i f <~> (i :+: t f (Chain t i f)) splittingChain = isoF unconsChain $ \case L1 x -> Done x R1 xs -> More xs -- | An analogue of 'unconsLB': match one of the two constructors of -- a 'Chain'. -- -- @since 0.3.0.0 unconsChain :: Chain t i f ~> i :+: t f (Chain t i f) unconsChain = \case Done x -> L1 x More xs -> R1 xs -- | Instead of defining yet another separate free semigroup like -- 'Data.Functor.Apply.Free.Ap1', -- 'Data.Functor.Contravariant.Divisible.Free.Div1', or -- 'Data.Functor.Contravariant.Divisible.Free.Dec1', we re-use 'Chain1'. -- -- You can assemble values using the combinators in "Data.HFunctor.Chain", -- and then tear them down/interpret them using 'runCoDayChain1' and -- 'runContraDayChain1'. There is no general invariant interpreter (and so no -- 'SemigroupIn' instance for 'Day') because the typeclasses used to -- express the target contexts are probably not worth defining given how -- little the Haskell ecosystem uses invariant functors as an abstraction. newtype DayChain1 f a = DayChain1_ { unDayChain1 :: Chain1 ID.Day f a } deriving (Invariant, HFunctor, Inject) -- | Instead of defining yet another separate free monoid like -- 'Control.Applicative.Free.Ap', -- 'Data.Functor.Contravariant.Divisible.Free.Div', or -- 'Data.Functor.Contravariant.Divisible.Free.Dec', we re-use 'Chain'. -- -- You can assemble values using the combinators in "Data.HFunctor.Chain", -- and then tear them down/interpret them using 'runCoDayChain' and -- 'runContraDayChain'. There is no general invariant interpreter (and so no -- 'MonoidIn' instance for 'Day') because the typeclasses used to express -- the target contexts are probably not worth defining given how little the -- Haskell ecosystem uses invariant functors as an abstraction. newtype DayChain f a = DayChain { unDayChain :: Chain ID.Day Identity f a } deriving (Invariant, HFunctor) instance Inject DayChain where inject x = DayChain $ More (ID.Day x (Done (Identity ())) const (,())) -- | Instead of defining yet another separate free semigroup like -- 'Data.Functor.Apply.Free.Ap1', -- 'Data.Functor.Contravariant.Divisible.Free.Div1', or -- 'Data.Functor.Contravariant.Divisible.Free.Dec1', we re-use 'Chain1'. -- -- You can assemble values using the combinators in "Data.HFunctor.Chain", -- and then tear them down/interpret them using 'runCoNightChain1' and -- 'runContraNightChain1'. There is no general invariant interpreter (and so no -- 'SemigroupIn' instance for 'Night') because the typeclasses used to -- express the target contexts are probably not worth defining given how -- little the Haskell ecosystem uses invariant functors as an abstraction. newtype NightChain1 f a = NightChain1_ { unNightChain1 :: Chain1 IN.Night f a } deriving (Invariant, HFunctor, Inject) -- | Instead of defining yet another separate free monoid like -- 'Control.Applicative.Free.Ap', -- 'Data.Functor.Contravariant.Divisible.Free.Div', or -- 'Data.Functor.Contravariant.Divisible.Free.Dec', we re-use 'Chain'. -- -- You can assemble values using the combinators in "Data.HFunctor.Chain", -- and then tear them down/interpret them using 'runCoNightChain' and -- 'runContraNightChain'. There is no general invariant interpreter (and so no -- 'MonoidIn' instance for 'Night') because the typeclasses used to express -- the target contexts are probably not worth defining given how little the -- Haskell ecosystem uses invariant functors as an abstraction. newtype NightChain f a = NightChain { unNightChain :: Chain IN.Night IN.Not f a } deriving (Invariant, HFunctor) instance Inject NightChain where inject x = NightChain $ More (IN.Night x (Done IN.refuted) Left id absurd)