{-# OPTIONS_GHC -Wno-orphans #-} -- | -- Module : Data.HBifunctor.Tensor -- Copyright : (c) Justin Le 2019 -- License : BSD3 -- -- Maintainer : justin@jle.im -- Stability : experimental -- Portability : non-portable -- -- This module provides tools for working with binary functor combinators. -- -- "Data.Functor.HFunctor" deals with /single/ functor combinators -- (transforming a single functor). This module provides tools for working -- with combinators that combine and mix two functors "together". -- -- The binary analog of 'HFunctor' is 'HBifunctor': we can map -- a structure-transforming function over both of the transformed functors. -- -- 'Tensor' gives some extra properties of your binary functor combinator: -- associativity and identity (see docs for 'Tensor' for more details). -- -- The binary analog of 'Interpret' is 'MonoidIn'. If your combinator @t@ -- and target functor @f@ is an instance of @'MonoidIn' t f@, it means you -- can "interpret" out of your tensored values, and also "generate" values -- of @f@. -- -- @ -- 'biretract' :: (f ':+:' f) a -> f a -- 'pureT' :: 'V1' a -> f a -- -- biretract :: 'Plus' f => (f ':*:' f) a -> f a -- pureT :: Plus f => 'Proxy' a -> f a -- -- biretract :: 'Applicative' f => 'Day' f f a -> f a -- pureT :: Applicative f => 'Identity' a -> f a -- -- biretract :: 'Monad' f => 'Comp' f f a -> f a -- pureT :: Monad f => 'Identity' a -> f a -- @ -- module Data.HBifunctor.Tensor ( -- * 'Tensor' Tensor(..) , rightIdentity , leftIdentity , sumLeftIdentity , sumRightIdentity , prodLeftIdentity , prodRightIdentity -- * 'MonoidIn' , MonoidIn(..) , nilLB , consLB , unconsLB , retractLB , interpretLB -- ** Utility , inL , inR , outL , outR , prodOutL , prodOutR , WrapF(..) , WrapLB(..) -- * 'Matchable' , Matchable(..) , splittingNE , matchingLB ) where import Control.Applicative.Free import Control.Applicative.ListF import Control.Applicative.Step import Control.Monad.Freer.Church import Control.Monad.Trans.Compose import Control.Natural import Control.Natural.IsoF import Data.Bifunctor import Data.Coerce import Data.Data import Data.Function import Data.Functor.Apply.Free import Data.Functor.Bind import Data.Functor.Classes import Data.Functor.Contravariant import Data.Functor.Contravariant.Conclude import Data.Functor.Contravariant.Decide import Data.Functor.Contravariant.Divise import Data.Functor.Contravariant.Divisible import Data.Functor.Contravariant.Divisible.Free import Data.Functor.Contravariant.Night (Night(..), Not(..)) import Data.Functor.Day (Day(..)) import Data.Functor.Identity import Data.Functor.Invariant import Data.Functor.Plus import Data.Functor.Product import Data.Functor.Sum import Data.Functor.These import Data.HBifunctor import Data.HBifunctor.Associative import Data.HBifunctor.Tensor.Internal import Data.HFunctor import Data.HFunctor.Chain.Internal import Data.HFunctor.Internal import Data.HFunctor.Interpret import Data.List.NonEmpty (NonEmpty(..)) import Data.Void import GHC.Generics import qualified Data.Bifunctor.Assoc as B import qualified Data.Functor.Contravariant.Coyoneda as CCY import qualified Data.Functor.Contravariant.Day as CD import qualified Data.Functor.Contravariant.Night as N import qualified Data.Functor.Day as D import qualified Data.Functor.Invariant.Day as ID import qualified Data.Functor.Invariant.Night as IN import qualified Data.Map.NonEmpty as NEM -- | @f@ is isomorphic to @t f i@: that is, @i@ is the identity of @t@, and -- leaves @f@ unchanged. rightIdentity :: (Tensor t i, FunctorBy t f) => f <~> t f i rightIdentity = isoF intro1 elim1 -- | @g@ is isomorphic to @t i g@: that is, @i@ is the identity of @t@, and -- leaves @g@ unchanged. leftIdentity :: (Tensor t i, FunctorBy t g) => g <~> t i g leftIdentity = isoF intro2 elim2 -- | 'leftIdentity' ('intro1' and 'elim1') for ':+:' actually does not -- require 'Functor'. This is the more general version. sumLeftIdentity :: f <~> V1 :+: f sumLeftIdentity = isoF R1 (absurd1 !+! id) -- | 'rightIdentity' ('intro2' and 'elim2') for ':+:' actually does not -- require 'Functor'. This is the more general version. sumRightIdentity :: f <~> f :+: V1 sumRightIdentity = isoF L1 (id !+! absurd1) -- | 'leftIdentity' ('intro1' and 'elim1') for ':*:' actually does not -- require 'Functor'. This is the more general version. prodLeftIdentity :: f <~> Proxy :*: f prodLeftIdentity = isoF (Proxy :*:) (\case _ :*: y -> y) -- | 'rightIdentity' ('intro2' and 'elim2') for ':*:' actually does not -- require 'Functor'. This is the more general version. prodRightIdentity :: g <~> g :*: Proxy prodRightIdentity = isoF (:*: Proxy) (\case x :*: _ -> x) -- | A poly-kinded version of 'outL' for ':*:'. prodOutL :: f :*: g ~> f prodOutL (x :*: _) = x -- | A poly-kinded version of 'outR' for ':*:'. prodOutR :: f :*: g ~> g prodOutR (_ :*: y) = y -- | This class effectively gives us a way to generate a value of @f a@ -- based on an @i a@, for @'Tensor' t i@. Having this ability makes a lot -- of interesting functions possible when used with 'biretract' from -- 'SemigroupIn' that weren't possible without it: it gives us a "base -- case" for recursion in a lot of cases. -- -- Essentially, we get an @i ~> f@, 'pureT', where we can introduce an @f -- a@ as long as we have an @i a@. -- -- Formally, if we have @'Tensor' t i@, we are enriching the category of -- endofunctors with monoid structure, turning it into a monoidal category. -- Different choices of @t@ give different monoidal categories. -- -- A functor @f@ is known as a "monoid in the (monoidal) category -- of endofunctors on @t@" if we can 'biretract': -- -- @ -- t f f ~> f -- @ -- -- and also 'pureT': -- -- @ -- i ~> f -- @ -- -- This gives us a few interesting results in category theory, which you -- can stil reading about if you don't care: -- -- * /All/ functors are monoids in the monoidal category -- on ':+:' -- * The class of functors that are monoids in the monoidal -- category on ':*:' is exactly the functors that are instances of -- 'Plus'. -- * The class of functors that are monoids in the monoidal -- category on 'Day' is exactly the functors that are instances of -- 'Applicative'. -- * The class of functors that are monoids in the monoidal -- category on 'Comp' is exactly the functors that are instances of -- 'Monad'. -- -- This is the meaning behind the common adage, "monads are just monoids -- in the category of endofunctors". It means that if you enrich the -- category of endofunctors to be monoidal with 'Comp', then the class -- of functors that are monoids in that monoidal category are exactly -- what monads are. However, the adage is a little misleading: there -- are many other ways to enrich the category of endofunctors to be -- monoidal, and 'Comp' is just one of them. Similarly, the class of -- functors that are monoids in the category of endofunctors enriched by -- 'Day' are 'Applicative'. -- -- Note that instances of this class are /intended/ to be written with @t@ -- and @i@ to be fixed type constructors, and @f@ to be allowed to vary -- freely: -- -- @ -- instance Monad f => MonoidIn Comp Identity f -- @ -- -- Any other sort of instance and it's easy to run into problems with type -- inference. If you want to write an instance that's "polymorphic" on -- tensor choice, use the 'WrapHBF' and 'WrapF' newtype wrappers over type -- variables, where the third argument also uses a type constructor: -- -- @ -- instance MonoidIn (WrapHBF t) (WrapF i) (MyFunctor t i) -- @ -- -- This will prevent problems with overloaded instances. class (Tensor t i, SemigroupIn t f) => MonoidIn t i f where -- | If we have an @i@, we can generate an @f@ based on how it -- interacts with @t@. -- -- Specialized (and simplified), this type is: -- -- @ -- 'pureT' \@'Day' :: 'Applicative' f => 'Identity' a -> f a -- 'pure' -- pureT \@'Comp' :: 'Monad' f => Identity a -> f a -- 'return' -- pureT \@(':*:') :: 'Plus' f => 'Proxy' a -> f a -- 'zero' -- @ -- -- Note that because @t@ appears nowhere in the input or output types, -- you must always use this with explicit type application syntax (like -- @pureT \@Day@) -- -- Along with 'biretract', this function makes @f@ a monoid in the -- category of endofunctors with respect to tensor @t@. pureT :: i ~> f default pureT :: Interpret (ListBy t) f => i ~> f pureT = retract . reviewF (splittingLB @t) . L1 -- | An implementation of 'retract' that works for any instance of -- @'MonoidIn' t i@ for @'ListBy' t@. -- -- Can be useful as a default implementation if you already have 'MonoidIn' -- implemented. retractLB :: forall t i f. MonoidIn t i f => ListBy t f ~> f retractLB = (pureT @t !*! biretract @t . hright (retractLB @t)) . unconsLB @t -- | An implementation of 'interpret' that works for any instance of -- @'MonoidIn' t i@ for @'ListBy' t@. -- -- Can be useful as a default implementation if you already have 'MonoidIn' -- implemented. interpretLB :: forall t i g f. MonoidIn t i f => (g ~> f) -> ListBy t g ~> f interpretLB f = retractLB @t . hmap f -- | Convenient wrapper over 'intro1' that lets us introduce an arbitrary -- functor @g@ to the right of an @f@. -- -- You can think of this as an 'HBifunctor' analogue of 'inject'. inL :: forall t i f g. MonoidIn t i g => f ~> t f g inL = hright (pureT @t) . intro1 -- | Convenient wrapper over 'intro2' that lets us introduce an arbitrary -- functor @f@ to the right of a @g@. -- -- You can think of this as an 'HBifunctor' analogue of 'inject'. inR :: forall t i f g. MonoidIn t i f => g ~> t f g inR = hleft (pureT @t) . intro2 -- | Convenient wrapper over 'elim1' that lets us drop one of the arguments -- of a 'Tensor' for free, without requiring any extra constraints (like -- for 'binterpret'). -- -- See 'prodOutL' for a version that does not require @'Functor' f@, -- specifically for ':*:'. outL :: (Tensor t Proxy, FunctorBy t f) => t f g ~> f outL = elim1 . hright absorb -- | Convenient wrapper over 'elim2' that lets us drop one of the arguments -- of a 'Tensor' for free, without requiring any constraints (like for -- 'binterpret'). -- -- See 'prodOutR' for a version that does not require @'Functor' g@, -- specifically for ':*:'. outR :: (Tensor t Proxy, FunctorBy t g) => t f g ~> g outR = elim2 . hleft absorb -- | For some @t@, we have the ability to "statically analyze" the @'ListBy' t@ -- and pattern match and manipulate the structure without ever -- interpreting or retracting. These are 'Matchable'. class Tensor t i => Matchable t i where -- | The inverse of 'splitNE'. A consing of @f@ to @'ListBy' t f@ is -- non-empty, so it can be represented as an @'NonEmptyBy' t f@. -- -- This is analogous to a function @'uncurry' ('Data.List.NonEmpty.:|') -- :: (a, [a]) -> 'Data.List.NonEmpty.NonEmpty' a@. unsplitNE :: FunctorBy t f => t f (ListBy t f) ~> NonEmptyBy t f -- | "Pattern match" on an @'ListBy' t f@: it is either empty, or it is -- non-empty (and so can be an @'NonEmptyBy' t f@). -- -- This is analgous to a function @'Data.List.NonEmpty.nonEmpty' :: [a] -- -> Maybe ('Data.List.NonEmpty.NonEmpty' a)@. -- -- Note that because @t@ cannot be inferred from the input or output -- type, you should use this with /-XTypeApplications/: -- -- @ -- 'matchLB' \@'Day' :: 'Ap' f a -> ('Identity' :+: 'Ap1' f) a -- @ -- -- Note that you can recursively "unroll" a 'ListBy' completely into -- a 'Data.HFunctor.Chain.Chain' by using -- 'Data.HFunctor.Chain.unrollLB'. matchLB :: FunctorBy t f => ListBy t f ~> i :+: NonEmptyBy t f -- | An @'NonEmptyBy' t f@ is isomorphic to an @f@ consed with an @'ListBy' t f@, like -- how a @'Data.List.NonEmpty.NonEmpty' a@ is isomorphic to @(a, [a])@. splittingNE :: (Matchable t i, FunctorBy t f) => NonEmptyBy t f <~> t f (ListBy t f) splittingNE = isoF splitNE unsplitNE -- | An @'ListBy' t f@ is isomorphic to either the empty case (@i@) or the -- non-empty case (@'NonEmptyBy' t f@), like how @[a]@ is isomorphic to @'Maybe' -- ('Data.List.NonEmpty.NonEmpty' a)@. matchingLB :: forall t i f. (Matchable t i, FunctorBy t f) => ListBy t f <~> i :+: NonEmptyBy t f matchingLB = isoF (matchLB @t) (nilLB @t !*! fromNE @t) instance Tensor (:*:) Proxy where type ListBy (:*:) = ListF intro1 = (:*: Proxy) intro2 = (Proxy :*:) elim1 (x :*: ~Proxy) = x elim2 (~Proxy :*: y ) = y appendLB (ListF xs :*: ListF ys) = ListF (xs ++ ys) splitNE = nonEmptyProd splittingLB = isoF to_ from_ where to_ = \case ListF [] -> L1 Proxy ListF (x:xs) -> R1 (x :*: ListF xs) from_ = \case L1 ~Proxy -> ListF [] R1 (x :*: ListF xs) -> ListF (x:xs) toListBy (x :*: y) = ListF [x, y] -- | Instances of 'Plus' are monoids in the monoidal category on -- ':*:'. instance Plus f => MonoidIn (:*:) Proxy f where pureT _ = zero instance Tensor Product Proxy where type ListBy Product = ListF intro1 = (`Pair` Proxy) intro2 = (Proxy `Pair`) elim1 (Pair x ~Proxy) = x elim2 (Pair ~Proxy y) = y appendLB (ListF xs `Pair` ListF ys) = ListF (xs ++ ys) splitNE = viewF prodProd . nonEmptyProd splittingLB = isoF to_ from_ where to_ = \case ListF [] -> L1 Proxy ListF (x:xs) -> R1 (x `Pair` ListF xs) from_ = \case L1 ~Proxy -> ListF [] R1 (x `Pair` ListF xs) -> ListF (x:xs) toListBy (Pair x y) = ListF [x, y] -- | Instances of 'Plus' are monoids in the monoidal category on -- 'Product'. instance Plus f => MonoidIn Product Proxy f where pureT _ = zero instance Tensor Day Identity where type ListBy Day = Ap intro1 = D.intro2 intro2 = D.intro1 elim1 = D.elim2 elim2 = D.elim1 appendLB (Day x y z) = z <$> x <*> y splitNE = ap1Day splittingLB = isoF to_ from_ where to_ = \case Pure x -> L1 (Identity x) Ap x xs -> R1 (Day x xs (&)) from_ = \case L1 (Identity x) -> Pure x R1 (Day x xs f) -> Ap x (flip f <$> xs) toListBy (Day x y z) = Ap x (Ap y (Pure (flip z))) -- | Instances of 'Applicative' are monoids in the monoidal category on -- the covariant 'Day'. -- -- Note that because of typeclass constraints, this requires 'Apply' as -- well as 'Applicative'. But, you can get a "local" instance of 'Apply' -- for any 'Applicative' using -- 'Data.Functor.Combinators.Unsafe.unsafeApply'. instance (Apply f, Applicative f) => MonoidIn Day Identity f where pureT = generalize -- | @since 0.3.0.0 instance Tensor CD.Day Proxy where type ListBy CD.Day = Div intro1 = CD.intro2 intro2 = CD.intro1 elim1 = CD.day1 elim2 = CD.day2 appendLB (CD.Day x y z) = divide z x y splitNE = go . splitNE @(:*:) . NonEmptyF . unDiv1 where go (CCY.Coyoneda f x :*: ListF xs) = CD.Day x (Div xs) (\y -> (f y, y)) splittingLB = isoF (ListF . unDiv) (Div . runListF) . splittingLB @(:*:) . isoF (hright to_) (hright from_) where to_ (CCY.Coyoneda f x :*: ListF xs) = CD.Day x (Div xs) (\y -> (f y, y)) from_ (CD.Day x (Div xs) f) = CCY.Coyoneda (fst . f) x :*: contramap (snd . f) (ListF xs) toListBy (CD.Day x y f) = Div . runListF . toListBy $ CCY.Coyoneda (fst . f) x :*: CCY.Coyoneda (snd . f) y -- | Instances of 'Divisible' are monoids in the monoidal category on -- contravariant 'CD.Day'. -- -- Note that because of typeclass constraints, this requires 'Divise' as -- well as 'Divisible'. But, you can get a "local" instance of 'Divise' -- for any 'Divisible' using -- 'Data.Functor.Combinators.Unsafe.unsafeDivise'. -- -- @since 0.3.0.0 instance (Divise f, Divisible f) => MonoidIn CD.Day Proxy f where pureT _ = conquer instance Tensor ID.Day Identity where type ListBy ID.Day = DivAp intro1 = ID.intro2 intro2 = ID.intro1 elim1 = ID.elim2 elim2 = ID.elim1 appendLB (ID.Day (DivAp xs) (DivAp ys) f g) = DivAp $ case xs of Done (Identity x) -> invmap (f x) (snd . g) ys More (ID.Day z zs h j) -> More $ ID.Day z (unDivAp $ appendLB (ID.Day (DivAp zs) (DivAp ys) (,) id)) (\q (r, s) -> f (h q r) s) (B.assoc . first j . g) splitNE = coerce splitChain1 splittingLB = coercedF . splittingChain . coercedF toListBy = DivAp . More . hright (unDivAp . inject) instance Matchable ID.Day Identity where unsplitNE = coerce unsplitNEIDay_ matchLB = coerce matchLBIDay_ unsplitNEIDay_ :: Invariant f => ID.Day f (Chain ID.Day Identity f) ~> Chain1 ID.Day f unsplitNEIDay_ (ID.Day x xs g f) = case xs of Done (Identity r) -> Done1 $ invmap (`g` r) (fst . f) x More ys -> More1 $ ID.Day x (unsplitNEIDay_ ys) g f matchLBIDay_ :: Invariant f => Chain ID.Day Identity f ~> (Identity :+: Chain1 ID.Day f) matchLBIDay_ = \case Done x -> L1 x More xs -> R1 $ unsplitNEIDay_ xs instance Tensor IN.Night IN.Not where type ListBy IN.Night = DecAlt intro1 = IN.intro2 intro2 = IN.intro1 elim1 = IN.elim2 elim2 = IN.elim1 appendLB (IN.Night (DecAlt xs) (DecAlt ys) f g h) = DecAlt $ case xs of Done r -> invmap h (either (absurd . refute r) id . f) ys More (IN.Night z zs j k l) -> More $ IN.Night z (unDecAlt $ appendLB (IN.Night (DecAlt zs) (DecAlt ys) id Left Right)) (B.assoc . first j . f) (g . k) (either (g . l) h) splitNE = coerce splitChain1 splittingLB = coercedF . splittingChain . coercedF toListBy = DecAlt . More . hright (unDecAlt . inject) instance Matchable IN.Night Not where unsplitNE = coerce unsplitNEINight_ matchLB = coerce matchLBINight_ unsplitNEINight_ :: Invariant f => IN.Night f (Chain IN.Night Not f) ~> Chain1 IN.Night f unsplitNEINight_ (IN.Night x xs f g h) = case xs of Done r -> Done1 $ invmap g (either id (absurd . refute r) . f) x More ys -> More1 $ IN.Night x (unsplitNEINight_ ys) f g h matchLBINight_ :: Invariant f => Chain IN.Night Not f ~> (Not :+: Chain1 IN.Night f) matchLBINight_ = \case Done x -> L1 x More xs -> R1 $ unsplitNEINight_ xs -- | @since 0.3.0.0 instance Tensor Night Not where type ListBy Night = Dec intro1 = N.intro2 intro2 = N.intro1 elim1 = N.elim2 elim2 = N.elim1 appendLB (Night x y z) = decide z x y splitNE (Dec1 f x xs) = Night x xs f splittingLB = isoF to_ from_ where to_ = \case Lose f -> L1 (Not f) Choose f x xs -> R1 (Night x xs f) from_ = \case L1 (Not f) -> Lose f R1 (Night x xs f) -> Choose f x xs toListBy (Night x y z) = Choose z x (inject y) -- | Instances of 'Conclude' are monoids in the monoidal category on 'Night'. instance Conclude f => MonoidIn Night Not f where pureT (Not x) = conclude x instance Tensor (:+:) V1 where type ListBy (:+:) = Step intro1 = L1 intro2 = R1 elim1 = \case L1 x -> x R1 y -> absurd1 y elim2 = \case L1 x -> absurd1 x R1 y -> y appendLB = id !*! stepUp . R1 splitNE = stepDown splittingLB = stepping . sumLeftIdentity toListBy = \case L1 x -> Step 0 x R1 x -> Step 1 x -- | All functors are monoids in the monoidal category on ':+:'. instance MonoidIn (:+:) V1 f where pureT = absurd1 instance Tensor Sum V1 where type ListBy Sum = Step intro1 = InL intro2 = InR elim1 = \case InL x -> x InR y -> absurd1 y elim2 = \case InL x -> absurd1 x InR y -> y appendLB = id !*! stepUp . R1 splitNE = viewF sumSum . stepDown splittingLB = stepping . sumLeftIdentity . overHBifunctor id sumSum toListBy = \case InL x -> Step 0 x InR x -> Step 1 x -- | All functors are monoids in the monoidal category on 'Sum'. instance MonoidIn Sum V1 f where pureT = absurd1 instance Tensor These1 V1 where type ListBy These1 = Steps intro1 = This1 intro2 = That1 elim1 = \case This1 x -> x That1 y -> absurd1 y These1 _ y -> absurd1 y elim2 = \case This1 x -> absurd1 x That1 y -> y These1 x _ -> absurd1 x appendLB = \case This1 x -> x That1 y -> stepsUp . That1 $ y These1 x y -> x <> y splitNE = stepsDown . flaggedVal . getComposeT splittingLB = steppings . sumLeftIdentity toListBy = \case This1 x -> Steps $ NEM.singleton 0 x That1 y -> Steps $ NEM.singleton 1 y These1 x y -> Steps $ NEM.fromDistinctAscList ((0, x) :| [(1, y)]) instance Alt f => MonoidIn These1 V1 f where pureT = absurd1 instance Tensor Comp Identity where type ListBy Comp = Free intro1 = (:>>= Identity) intro2 = (Identity () :>>=) . const elim1 (x :>>= y) = runIdentity . y <$> x elim2 (x :>>= y) = y (runIdentity x) appendLB (x :>>= y) = x >>= y splitNE = free1Comp splittingLB = isoF to_ from_ where to_ :: Free f ~> Identity :+: Comp f (Free f) to_ = foldFree' (L1 . Identity) $ \y n -> R1 $ y :>>= (from_ . n) from_ :: Identity :+: Comp f (Free f) ~> Free f from_ = generalize !*! (\case x :>>= f -> liftFree x >>= f) toListBy (x :>>= y) = liftFree x >>= (inject . y) -- | Instances of 'Monad' are monoids in the monoidal category on -- 'Comp'. -- -- This instance is the "proof" that "monads are the monoids in the -- category of endofunctors (enriched with 'Comp')" -- -- Note that because of typeclass constraints, this requires 'Bind' as -- well as 'Monad'. But, you can get a "local" instance of 'Apply' -- for any 'Monad' using -- 'Data.Functor.Combinators.Unsafe.unsafeBind'. instance (Bind f, Monad f) => MonoidIn Comp Identity f where pureT = generalize instance Matchable (:*:) Proxy where unsplitNE = ProdNonEmpty matchLB = fromListF instance Matchable Product Proxy where unsplitNE = ProdNonEmpty . reviewF prodProd matchLB = fromListF instance Matchable Day Identity where unsplitNE = DayAp1 matchLB = fromAp -- | Instances of 'Conclude' are monoids in the monoidal category on 'Night'. -- -- @since 0.3.0.0 instance Matchable CD.Day Proxy where unsplitNE (CD.Day x (Div xs) f) = Div1 . runNonEmptyF . unsplitNE $ CCY.Coyoneda (fst . f) x :*: contramap (snd . f) (ListF xs) matchLB = hright (Div1 . runNonEmptyF) . matchLB @(:*:) . ListF . unDiv -- | @since 0.3.0.0 instance Matchable Night Not where unsplitNE (Night x xs f) = Dec1 f x xs matchLB = \case Lose f -> L1 (Not f) Choose f x xs -> R1 (Dec1 f x xs) instance Matchable (:+:) V1 where unsplitNE = stepUp matchLB = R1 instance Matchable Sum V1 where unsplitNE = stepUp . reviewF sumSum matchLB = R1 -- We can't write this until we get an isomorphism between MF These1 and SF These1 -- instance Matchable These1 where -- unsplitNE = stepsUp -- matchLB = R1 -- | A newtype wrapper meant to be used to define polymorphic 'MonoidIn' -- instances. See documentation for 'MonoidIn' for more information. -- -- Please do not ever define an instance of 'MonoidIn' "naked" on the -- third parameter: -- -- @ -- instance MonidIn (WrapHBF t) (WrapF i) f -- @ -- -- As that would globally ruin everything using 'WrapHBF'. newtype WrapF f a = WrapF { unwrapF :: f a } deriving (Show, Read, Eq, Ord, Functor, Foldable, Traversable, Typeable, Generic, Data) instance Show1 f => Show1 (WrapF f) where liftShowsPrec sp sl d (WrapF x) = showsUnaryWith (liftShowsPrec sp sl) "WrapF" d x instance Eq1 f => Eq1 (WrapF f) where liftEq eq (WrapF x) (WrapF y) = liftEq eq x y instance Ord1 f => Ord1 (WrapF f) where liftCompare c (WrapF x) (WrapF y) = liftCompare c x y instance Tensor t i => Tensor (WrapHBF t) (WrapF i) where type ListBy (WrapHBF t) = ListBy t intro1 = WrapHBF . hright WrapF . intro1 intro2 = WrapHBF . hleft WrapF . intro2 elim1 = elim1 . hright unwrapF . unwrapHBF elim2 = elim2 . hleft unwrapF . unwrapHBF appendLB = appendLB . unwrapHBF splitNE = WrapHBF . splitNE splittingLB = splittingLB @t . overHBifunctor (isoF WrapF unwrapF) (isoF WrapHBF unwrapHBF) toListBy = toListBy . unwrapHBF fromNE = fromNE @t -- | Any @'ListBy' t f@ is a @'SemigroupIn' t@ and a @'MonoidIn' t i@, if we -- have @'Tensor' t i@. This newtype wrapper witnesses that fact. We -- require a newtype wrapper to avoid overlapping instances. newtype WrapLB t f a = WrapLB { unwrapLB :: ListBy t f a } instance Functor (ListBy t f) => Functor (WrapLB t f) where fmap f (WrapLB x) = WrapLB (fmap f x) -- | @since 0.3.0.0 instance Contravariant (ListBy t f) => Contravariant (WrapLB t f) where contramap f (WrapLB x) = WrapLB (contramap f x) -- | @since 0.3.0.0 instance Invariant (ListBy t f) => Invariant (WrapLB t f) where invmap f g (WrapLB x) = WrapLB (invmap f g x) instance (Tensor t i, FunctorBy t f, FunctorBy t (WrapLB t f)) => SemigroupIn (WrapHBF t) (WrapLB t f) where biretract = WrapLB . appendLB . hbimap unwrapLB unwrapLB . unwrapHBF binterpret f g = biretract . hbimap f g instance (Tensor t i, FunctorBy t f, FunctorBy t (WrapLB t f)) => MonoidIn (WrapHBF t) (WrapF i) (WrapLB t f) where pureT = WrapLB . nilLB @t . unwrapF