{-# LANGUAGE DefaultSignatures, DeriveFunctor, FlexibleInstances, FunctionalDependencies, RankNTypes, UndecidableInstances #-} module Control.Effect.Carrier ( HFunctor(..) , Effect(..) , Carrier(..) , handlePure , handleCoercible , handleReader , handleState , handleEither , handleTraversable , interpret ) where import Control.Monad (join) import Data.Coerce class HFunctor h where -- | Functor map. This is required to be 'fmap'. -- -- This can go away once we have quantified constraints. fmap' :: (a -> b) -> (h m a -> h m b) default fmap' :: Functor (h m) => (a -> b) -> (h m a -> h m b) fmap' = fmap {-# INLINE fmap' #-} -- | Higher-order functor map of a natural transformation over higher-order positions within the effect. hmap :: (forall x . m x -> n x) -> (h m a -> h n a) -- | The class of effect types, which must: -- -- 1. Be functorial in their last two arguments, and -- 2. Support threading effects in higher-order positions through using the carrier’s suspended state. class HFunctor sig => Effect sig where -- | Handle any effects in a signature by threading the carrier’s state all the way through to the continuation. handle :: Functor f => f () -> (forall x . f (m x) -> n (f x)) -> sig m (m a) -> sig n (n (f a)) -- | The class of carriers (results) for algebras (effect handlers) over signatures (effects), whose actions are given by the 'eff' method. class (HFunctor sig, Monad m) => Carrier sig m | m -> sig where -- | Construct a value in the carrier for an effect signature (typically a sum of a handled effect and any remaining effects). eff :: sig m (m a) -> m a -- | Construct a value in the carrier for an effect signature (typically a sum of a handled effect and any remaining effects). ret :: a -> m a ret = pure {-# DEPRECATED ret "Use 'pure' instead; 'ret' is a historical alias and will be removed in future versions" #-} -- | Apply a handler specified as a natural transformation to both higher-order and continuation positions within an 'HFunctor'. handlePure :: HFunctor sig => (forall x . f x -> g x) -> sig f (f a) -> sig g (g a) handlePure handler = hmap handler . fmap' handler {-# INLINE handlePure #-} -- | Thread a 'Coercible' carrier through an 'HFunctor'. -- -- This is applicable whenever @f@ is 'Coercible' to @g@, e.g. simple @newtype@s. handleCoercible :: (HFunctor sig, Coercible f g) => sig f (f a) -> sig g (g a) handleCoercible = handlePure coerce {-# INLINE handleCoercible #-} {-# DEPRECATED handleReader, handleState, handleEither, handleTraversable "Compose carrier types from other carriers and define 'eff' with handleCoercible instead" #-} -- | Thread a @Reader@-like carrier through an 'HFunctor'. handleReader :: HFunctor sig => r -> (forall x . f x -> r -> g x) -> sig f (f a) -> sig g (g a) handleReader r run = handlePure (flip run r) {-# INLINE handleReader #-} -- | Thread a @State@-like carrier through an 'Effect'. handleState :: Effect sig => s -> (forall x . f x -> s -> g (s, x)) -> sig f (f a) -> sig g (g (s, a)) handleState s run = handle (s, ()) (uncurry (flip run)) {-# INLINE handleState #-} -- | Thread a carrier producing 'Either's through an 'Effect'. handleEither :: (Carrier sig g, Effect sig) => (forall x . f x -> g (Either e x)) -> sig f (f a) -> sig g (g (Either e a)) handleEither run = handle (Right ()) (either (pure . Left) run) {-# INLINE handleEither #-} -- | Thread a carrier producing values in a 'Traversable' 'Monad' (e.g. '[]') through an 'Effect'. handleTraversable :: (Effect sig, Applicative g, Monad m, Traversable m) => (forall x . f x -> g (m x)) -> sig f (f a) -> sig g (g (m a)) handleTraversable run = handle (pure ()) (fmap join . traverse run) {-# INLINE handleTraversable #-} -- | A backwards-compatibility shim, equivalent to 'id'. interpret :: carrier a -> carrier a interpret = id {-# DEPRECATED interpret "Not necessary with monadic carriers; remove or replace with 'id'." #-}