{-# LANGUAGE FlexibleContexts #-} {-# LANGUAGE TypeFamilies #-} module Futhark.Pass.ExtractKernels.BlockedKernel ( segRed , nonSegRed , segScan , segGenRed , streamRed , streamMap , mapKernel , KernelInput(..) , readKernelInput , newKernelSpace , getSize ) where import Control.Monad import Control.Monad.Writer import Data.Maybe import Data.List import Prelude hiding (quot) import Futhark.Analysis.PrimExp import Futhark.Representation.AST import Futhark.Representation.Kernels hiding (Prog, Body, Stm, Pattern, PatElem, BasicOp, Exp, Lambda, FunDef, FParam, LParam, RetType) import Futhark.MonadFreshNames import Futhark.Tools import Futhark.Transform.Rename getSize :: (MonadBinder m, Op (Lore m) ~ HostOp (Lore m) inner) => String -> SizeClass -> m SubExp getSize desc size_class = do size_key <- nameFromString . pretty <$> newVName desc letSubExp desc $ Op $ GetSize size_key size_class -- | Given a chunked fold lambda that takes its initial accumulator -- value as parameters, bind those parameters to the neutral element -- instead. kerneliseLambda :: MonadFreshNames m => [SubExp] -> Lambda InKernel -> m (Lambda InKernel) kerneliseLambda nes lam = do thread_index <- newVName "thread_index" let thread_index_param = Param thread_index $ Prim int32 (fold_chunk_param, fold_acc_params, fold_inp_params) = partitionChunkedFoldParameters (length nes) $ lambdaParams lam mkAccInit p (Var v) | not $ primType $ paramType p = mkLet [] [paramIdent p] $ BasicOp $ Copy v mkAccInit p x = mkLet [] [paramIdent p] $ BasicOp $ SubExp x acc_init_bnds = stmsFromList $ zipWith mkAccInit fold_acc_params nes return lam { lambdaBody = insertStms acc_init_bnds $ lambdaBody lam , lambdaParams = thread_index_param : fold_chunk_param : fold_inp_params } prepareRedOrScan :: (MonadBinder m, Lore m ~ Kernels) => SubExp -> SubExp -> LambdaT InKernel -> [VName] -> [(VName, SubExp)] -> [KernelInput] -> m (KernelSpace, KernelBody InKernel) prepareRedOrScan total_num_elements w map_lam arrs ispace inps = do (_, KernelSize num_groups group_size _ _ num_threads) <- blockedKernelSize =<< asIntS Int64 total_num_elements gtid <- newVName "gtid" kspace <- newKernelSpace (num_groups, group_size, num_threads, num_groups) $ FlatThreadSpace $ ispace ++ [(gtid, w)] body <- fmap (uncurry (flip (KernelBody ()))) $ runBinder $ localScope (scopeOfKernelSpace kspace) $ do mapM_ (addStm <=< readKernelInput) inps forM_ (zip (lambdaParams map_lam) arrs) $ \(p, arr) -> do arr_t <- lookupType arr letBindNames_ [paramName p] $ BasicOp $ Index arr $ fullSlice arr_t [DimFix $ Var gtid] map ThreadsReturn <$> bodyBind (lambdaBody map_lam) return (kspace, body) segRed :: (MonadFreshNames m, HasScope Kernels m) => Pattern Kernels -> SubExp -> SubExp -- segment size -> [SegRedOp InKernel] -> Lambda InKernel -> [VName] -> [(VName, SubExp)] -- ispace = pair of (gtid, size) for the maps on "top" of this reduction -> [KernelInput] -- inps = inputs that can be looked up by using the gtids from ispace -> m (Stms Kernels) segRed pat total_num_elements w ops map_lam arrs ispace inps = runBinder_ $ do (kspace, kbody) <- prepareRedOrScan total_num_elements w map_lam arrs ispace inps letBind_ pat $ Op $ HostOp $ SegRed kspace ops (lambdaReturnType map_lam) kbody segScan :: (MonadFreshNames m, HasScope Kernels m) => Pattern Kernels -> SubExp -> SubExp -- segment size -> Lambda InKernel -> Lambda InKernel -> [SubExp] -> [VName] -> [(VName, SubExp)] -- ispace = pair of (gtid, size) for the maps on "top" of this scan -> [KernelInput] -- inps = inputs that can be looked up by using the gtids from ispace -> m (Stms Kernels) segScan pat total_num_elements w scan_lam map_lam nes arrs ispace inps = runBinder_ $ do (kspace, kbody) <- prepareRedOrScan total_num_elements w map_lam arrs ispace inps letBind_ pat $ Op $ HostOp $ SegScan kspace scan_lam nes (lambdaReturnType map_lam) kbody dummyDim :: (MonadFreshNames m, MonadBinder m) => Pattern Kernels -> m (Pattern Kernels, [(VName, SubExp)], m ()) dummyDim pat = do -- We add a unit-size segment on top to ensure that the result -- of the SegRed is an array, which we then immediately index. -- This is useful in the case that the value is used on the -- device afterwards, as this may save an expensive -- host-device copy (scalars are kept on the host, but arrays -- may be on the device). let addDummyDim t = t `arrayOfRow` intConst Int32 1 pat' <- fmap addDummyDim <$> renamePattern pat dummy <- newVName "dummy" let ispace = [(dummy, intConst Int32 1)] return (pat', ispace, forM_ (zip (patternNames pat') (patternNames pat)) $ \(from, to) -> do from_t <- lookupType from letBindNames_ [to] $ BasicOp $ Index from $ fullSlice from_t [DimFix $ intConst Int32 0]) nonSegRed :: (MonadFreshNames m, HasScope Kernels m) => Pattern Kernels -> SubExp -> [SegRedOp InKernel] -> Lambda InKernel -> [VName] -> m (Stms Kernels) nonSegRed pat w ops map_lam arrs = runBinder_ $ do (pat', ispace, read_dummy) <- dummyDim pat addStms =<< segRed pat' w w ops map_lam arrs ispace [] read_dummy prepareStream :: (MonadBinder m, Lore m ~ Kernels) => KernelSize -> [(VName, SubExp)] -> SubExp -> Commutativity -> Lambda InKernel -> [SubExp] -> [VName] -> m (KernelSpace, [Type], KernelBody InKernel) prepareStream size ispace w comm fold_lam nes arrs = do let (KernelSize num_groups group_size elems_per_thread _ num_threads) = size let (ordering, split_ordering) = case comm of Commutative -> (Disorder, SplitStrided num_threads) Noncommutative -> (InOrder, SplitContiguous) fold_lam' <- kerneliseLambda nes fold_lam elems_per_thread_32 <- asIntS Int32 elems_per_thread gtid <- newVName "gtid" kspace <- newKernelSpace (num_groups, group_size, num_threads, num_groups) $ FlatThreadSpace $ ispace ++ [(gtid, num_threads)] kbody <- fmap (uncurry (flip (KernelBody ()))) $ runBinder $ localScope (scopeOfKernelSpace kspace) $ do (chunk_red_pes, chunk_map_pes) <- blockedPerThread gtid w size ordering fold_lam' (length nes) arrs let concatReturns pe = ConcatReturns split_ordering w elems_per_thread_32 Nothing $ patElemName pe return (map (ThreadsReturn . Var . patElemName) chunk_red_pes ++ map concatReturns chunk_map_pes) let (redout_ts, mapout_ts) = splitAt (length nes) $ lambdaReturnType fold_lam ts = redout_ts ++ map rowType mapout_ts return (kspace, ts, kbody) streamRed :: (MonadFreshNames m, HasScope Kernels m) => Pattern Kernels -> SubExp -> Commutativity -> Lambda InKernel -> Lambda InKernel -> [SubExp] -> [VName] -> m (Stms Kernels) streamRed pat w comm red_lam fold_lam nes arrs = runBinder_ $ do -- The strategy here is to rephrase the stream reduction as a -- non-segmented SegRed that does explicit chunking within its body. -- First, figure out how many threads to use for this. (_, size) <- blockedKernelSize =<< asIntS Int64 w let (redout_pes, mapout_pes) = splitAt (length nes) $ patternElements pat (redout_pat, ispace, read_dummy) <- dummyDim $ Pattern [] redout_pes let pat' = Pattern [] $ patternElements redout_pat ++ mapout_pes (kspace, ts, kbody) <- prepareStream size ispace w comm fold_lam nes arrs letBind_ pat' $ Op $ HostOp $ SegRed kspace [SegRedOp comm red_lam nes mempty] ts kbody read_dummy -- Similar to streamRed, but without the last reduction. streamMap :: (MonadFreshNames m, HasScope Kernels m) => [String] -> [PatElem Kernels] -> SubExp -> Commutativity -> Lambda InKernel -> [SubExp] -> [VName] -> m ((SubExp, [VName]), Stms Kernels) streamMap out_desc mapout_pes w comm fold_lam nes arrs = runBinder $ do (_, size) <- blockedKernelSize =<< asIntS Int64 w (kspace, ts, kbody) <- prepareStream size [] w comm fold_lam nes arrs let redout_ts = take (length nes) ts redout_pes <- forM (zip out_desc redout_ts) $ \(desc, t) -> PatElem <$> newVName desc <*> pure (t `arrayOfRow` spaceNumThreads kspace) let pat = Pattern [] $ redout_pes ++ mapout_pes letBind_ pat $ Op $ HostOp $ SegMap kspace ts kbody return (spaceNumThreads kspace, map patElemName redout_pes) segGenRed :: (MonadFreshNames m, HasScope Kernels m) => Pattern Kernels -> SubExp -> [(VName,SubExp)] -- ^ Segment indexes and sizes. -> [KernelInput] -> [GenReduceOp InKernel] -> Lambda InKernel -> [VName] -> m (Stms Kernels) segGenRed pat arr_w ispace inps ops lam arrs = runBinder_ $ do let (_, segment_sizes) = unzip ispace arr_w_64 <- letSubExp "arr_w_64" =<< eConvOp (SExt Int32 Int64) (toExp arr_w) segment_sizes_64 <- mapM (letSubExp "segment_size_64" <=< eConvOp (SExt Int32 Int64) . toExp) segment_sizes total_w <- letSubExp "genreduce_elems" =<< foldBinOp (Mul Int64) arr_w_64 segment_sizes_64 (_, KernelSize num_groups group_size _ _ num_threads) <- blockedKernelSize total_w gtid <- newVName "gtid" kspace <- newKernelSpace (num_groups, group_size, num_threads, num_groups) $ FlatThreadSpace $ ispace ++ [(gtid, arr_w)] kbody <- fmap (uncurry (flip $ KernelBody ())) $ runBinder $ localScope (scopeOfKernelSpace kspace) $ do mapM_ (addStm <=< readKernelInput) inps forM_ (zip (lambdaParams lam) arrs) $ \(p, arr) -> do arr_t <- lookupType arr letBindNames_ [paramName p] $ BasicOp $ Index arr $ fullSlice arr_t [DimFix $ Var gtid] map ThreadsReturn <$> bodyBind (lambdaBody lam) letBind_ pat $ Op $ HostOp $ SegGenRed kspace ops (lambdaReturnType lam) kbody blockedPerThread :: (MonadBinder m, Lore m ~ InKernel) => VName -> SubExp -> KernelSize -> StreamOrd -> Lambda InKernel -> Int -> [VName] -> m ([PatElem InKernel], [PatElem InKernel]) blockedPerThread thread_gtid w kernel_size ordering lam num_nonconcat arrs = do let (_, chunk_size, [], arr_params) = partitionChunkedKernelFoldParameters 0 $ lambdaParams lam ordering' = case ordering of InOrder -> SplitContiguous Disorder -> SplitStrided $ kernelNumThreads kernel_size red_ts = take num_nonconcat $ lambdaReturnType lam map_ts = map rowType $ drop num_nonconcat $ lambdaReturnType lam per_thread <- asIntS Int32 $ kernelElementsPerThread kernel_size splitArrays (paramName chunk_size) (map paramName arr_params) ordering' w (Var thread_gtid) per_thread arrs chunk_red_pes <- forM red_ts $ \red_t -> do pe_name <- newVName "chunk_fold_red" return $ PatElem pe_name red_t chunk_map_pes <- forM map_ts $ \map_t -> do pe_name <- newVName "chunk_fold_map" return $ PatElem pe_name $ map_t `arrayOfRow` Var (paramName chunk_size) let (chunk_red_ses, chunk_map_ses) = splitAt num_nonconcat $ bodyResult $ lambdaBody lam addStms $ bodyStms (lambdaBody lam) <> stmsFromList [ Let (Pattern [] [pe]) (defAux ()) $ BasicOp $ SubExp se | (pe,se) <- zip chunk_red_pes chunk_red_ses ] <> stmsFromList [ Let (Pattern [] [pe]) (defAux ()) $ BasicOp $ SubExp se | (pe,se) <- zip chunk_map_pes chunk_map_ses ] return (chunk_red_pes, chunk_map_pes) splitArrays :: (MonadBinder m, Lore m ~ InKernel) => VName -> [VName] -> SplitOrdering -> SubExp -> SubExp -> SubExp -> [VName] -> m () splitArrays chunk_size split_bound ordering w i elems_per_i arrs = do letBindNames_ [chunk_size] $ Op $ SplitSpace ordering w i elems_per_i case ordering of SplitContiguous -> do offset <- letSubExp "slice_offset" $ BasicOp $ BinOp (Mul Int32) i elems_per_i zipWithM_ (contiguousSlice offset) split_bound arrs SplitStrided stride -> zipWithM_ (stridedSlice stride) split_bound arrs where contiguousSlice offset slice_name arr = do arr_t <- lookupType arr let slice = fullSlice arr_t [DimSlice offset (Var chunk_size) (constant (1::Int32))] letBindNames_ [slice_name] $ BasicOp $ Index arr slice stridedSlice stride slice_name arr = do arr_t <- lookupType arr let slice = fullSlice arr_t [DimSlice i (Var chunk_size) stride] letBindNames_ [slice_name] $ BasicOp $ Index arr slice data KernelSize = KernelSize { kernelWorkgroups :: SubExp -- ^ Int32 , kernelWorkgroupSize :: SubExp -- ^ Int32 , kernelElementsPerThread :: SubExp -- ^ Int64 , kernelTotalElements :: SubExp -- ^ Int64 , kernelNumThreads :: SubExp -- ^ Int32 } deriving (Eq, Ord, Show) numberOfGroups :: MonadBinder m => SubExp -> SubExp -> SubExp -> m (SubExp, SubExp) numberOfGroups w group_size max_num_groups = do -- If 'w' is small, we launch fewer groups than we normally would. -- We don't want any idle groups. w_div_group_size <- letSubExp "w_div_group_size" =<< eDivRoundingUp Int64 (eSubExp w) (eSubExp group_size) -- We also don't want zero groups. num_groups_maybe_zero <- letSubExp "num_groups_maybe_zero" $ BasicOp $ BinOp (SMin Int64) w_div_group_size max_num_groups num_groups <- letSubExp "num_groups" $ BasicOp $ BinOp (SMax Int64) (intConst Int64 1) num_groups_maybe_zero num_threads <- letSubExp "num_threads" $ BasicOp $ BinOp (Mul Int64) num_groups group_size return (num_groups, num_threads) blockedKernelSize :: (MonadBinder m, Lore m ~ Kernels) => SubExp -> m (SubExp, KernelSize) blockedKernelSize w = do group_size <- getSize "group_size" SizeGroup max_num_groups <- getSize "max_num_groups" SizeNumGroups group_size' <- asIntS Int64 group_size max_num_groups' <- asIntS Int64 max_num_groups (num_groups, num_threads) <- numberOfGroups w group_size' max_num_groups' num_groups' <- asIntS Int32 num_groups num_threads' <- asIntS Int32 num_threads per_thread_elements <- letSubExp "per_thread_elements" =<< eDivRoundingUp Int64 (toExp =<< asIntS Int64 w) (toExp =<< asIntS Int64 num_threads) return (max_num_groups, KernelSize num_groups' group_size per_thread_elements w num_threads') createsArrays :: KernelBody InKernel -> Bool createsArrays = getAny . execWriter . mapM_ onStm . kernelBodyStms where onStm stm = do when (any (not . primType) $ patternTypes $ stmPattern stm) $ tell $ Any True walkExpM walker $ stmExp stm walker = identityWalker { walkOnBody = mapM_ onStm . bodyStms } mapKernelSkeleton :: (HasScope Kernels m, MonadFreshNames m) => SubExp -> SpaceStructure -> [KernelInput] -> Bool -> m (KernelSpace, Stms Kernels, Stms InKernel) mapKernelSkeleton w ispace inputs creates_arrays = do ((group_size, num_threads, num_groups, virt_groups), ksize_bnds) <- runBinder $ -- If the kernel creates arrays internally (meaning it will -- require memory expansion), we want to truncate the amount of -- threads. Otherwise, have at it! This is a bit of a hack - in -- principle, we should make this decision later, when we have a -- clearer idea of what is happening inside the kernel. if not creates_arrays then do group_size <- getSize "group_size" SizeGroup num_groups <- letSubExp "num_groups" =<< eDivRoundingUp Int32 (eSubExp w) (eSubExp group_size) num_threads <- letSubExp "num_threads" $ BasicOp $ BinOp (Mul Int32) num_groups group_size return (group_size, num_threads, num_groups, num_groups) else do (_, ksize) <- blockedKernelSize =<< asIntS Int64 w virt_groups <- letSubExp "virt_groups" =<< eDivRoundingUp Int32 (eSubExp w) (eSubExp (kernelWorkgroupSize ksize)) return (kernelWorkgroupSize ksize, kernelNumThreads ksize, kernelWorkgroups ksize, virt_groups) read_input_bnds <- stmsFromList <$> mapM readKernelInput inputs let ksize = (num_groups, group_size, num_threads, virt_groups) space <- newKernelSpace ksize ispace return (space, ksize_bnds, read_input_bnds) mapKernel :: (HasScope Kernels m, MonadFreshNames m) => SubExp -> SpaceStructure -> [KernelInput] -> [Type] -> KernelBody InKernel -> m (Stms Kernels, Kernel InKernel) mapKernel w ispace inputs rts kbody@(KernelBody () kstms krets) = do (space, ksize_bnds, read_input_bnds) <- mapKernelSkeleton w ispace inputs $ createsArrays kbody let kbody' = KernelBody () (read_input_bnds <> kstms) krets return (ksize_bnds, Kernel (KernelDebugHints "map" []) space rts kbody') data KernelInput = KernelInput { kernelInputName :: VName , kernelInputType :: Type , kernelInputArray :: VName , kernelInputIndices :: [SubExp] } deriving (Show) readKernelInput :: (HasScope scope m, Monad m) => KernelInput -> m (Stm InKernel) readKernelInput inp = do let pe = PatElem (kernelInputName inp) $ kernelInputType inp arr_t <- lookupType $ kernelInputArray inp return $ Let (Pattern [] [pe]) (defAux ()) $ BasicOp $ Index (kernelInputArray inp) $ fullSlice arr_t $ map DimFix $ kernelInputIndices inp newKernelSpace :: MonadFreshNames m => (SubExp,SubExp,SubExp,SubExp) -> SpaceStructure -> m KernelSpace newKernelSpace (num_groups, group_size, num_threads, virt_groups) ispace = KernelSpace <$> newVName "global_tid" <*> newVName "local_tid" <*> newVName "group_id" <*> pure num_threads <*> pure num_groups <*> pure group_size <*> pure virt_groups <*> pure ispace