-- | This module provides various simple ways to query and manipulate -- fundamental Futhark terms, such as types and values. The intent is to -- keep "Futhark.Language.Syntax" simple, and put whatever embellishments -- we need here. module Language.Futhark.Prop ( -- * Various Intrinsic (..), intrinsics, isBuiltin, isBuiltinLoc, maxIntrinsicTag, namesToPrimTypes, qualName, qualify, primValueType, leadingOperator, progImports, decImports, progModuleTypes, identifierReference, prettyStacktrace, progHoles, defaultEntryPoint, paramName, -- * Queries on expressions typeOf, valBindTypeScheme, valBindBound, funType, -- * Queries on patterns and params patIdents, patNames, patternMap, patternType, patternStructType, patternParam, patternOrderZero, -- * Queries on types uniqueness, unique, aliases, diet, arrayRank, arrayShape, orderZero, unfoldFunType, foldFunType, foldFunTypeFromParams, typeVars, -- * Operations on types peelArray, stripArray, arrayOf, toStructural, toStruct, fromStruct, setAliases, addAliases, setUniqueness, noSizes, traverseDims, DimPos (..), tupleRecord, isTupleRecord, areTupleFields, tupleFields, tupleFieldNames, sortFields, sortConstrs, isTypeParam, isSizeParam, combineTypeShapes, matchDims, -- | Values of these types are produces by the parser. They use -- unadorned names and have no type information, apart from that -- which is syntactically required. NoInfo (..), UncheckedType, UncheckedTypeExp, UncheckedIdent, UncheckedDimIndex, UncheckedSlice, UncheckedExp, UncheckedModExp, UncheckedSigExp, UncheckedTypeParam, UncheckedPat, UncheckedValBind, UncheckedDec, UncheckedSpec, UncheckedProg, UncheckedCase, ) where import Control.Monad import Control.Monad.State import Data.Bifoldable import Data.Bifunctor import Data.Bitraversable (bitraverse) import Data.Char import Data.Foldable import Data.List (genericLength, isPrefixOf, sortOn) import Data.Loc (Loc (..), posFile) import Data.Map.Strict qualified as M import Data.Maybe import Data.Ord import Data.Set qualified as S import Futhark.Util (maxinum) import Futhark.Util.Pretty import Language.Futhark.Primitive qualified as Primitive import Language.Futhark.Syntax import Language.Futhark.Traversals import Language.Futhark.Tuple import System.FilePath (takeDirectory) -- | The name of the default program entry point (@main@). defaultEntryPoint :: Name defaultEntryPoint = nameFromString "main" -- | Return the dimensionality of a type. For non-arrays, this is -- zero. For a one-dimensional array it is one, for a two-dimensional -- it is two, and so forth. arrayRank :: TypeBase dim as -> Int arrayRank = shapeRank . arrayShape -- | Return the shape of a type - for non-arrays, this is 'mempty'. arrayShape :: TypeBase dim as -> Shape dim arrayShape (Array _ _ ds _) = ds arrayShape _ = mempty -- | Change the shape of a type to be just the rank. noSizes :: TypeBase Size as -> TypeBase () as noSizes = first $ const () -- | Where does this dimension occur? data DimPos = -- | Immediately in the argument to 'traverseDims'. PosImmediate | -- | In a function parameter type. PosParam | -- | In a function return type. PosReturn deriving (Eq, Ord, Show) -- | Perform a traversal (possibly including replacement) on sizes -- that are parameters in a function type, but also including the type -- immediately passed to the function. Also passes along a set of the -- parameter names inside the type that have come in scope at the -- occurrence of the dimension. traverseDims :: forall f fdim tdim als. Applicative f => (S.Set VName -> DimPos -> fdim -> f tdim) -> TypeBase fdim als -> f (TypeBase tdim als) traverseDims f = go mempty PosImmediate where go :: forall als'. S.Set VName -> DimPos -> TypeBase fdim als' -> f (TypeBase tdim als') go bound b t@Array {} = bitraverse (f bound b) pure t go bound b (Scalar (Record fields)) = Scalar . Record <$> traverse (go bound b) fields go bound b (Scalar (TypeVar as u tn targs)) = Scalar <$> (TypeVar as u tn <$> traverse (onTypeArg bound b) targs) go bound b (Scalar (Sum cs)) = Scalar . Sum <$> traverse (traverse (go bound b)) cs go _ _ (Scalar (Prim t)) = pure $ Scalar $ Prim t go bound _ (Scalar (Arrow als p u t1 (RetType dims t2))) = Scalar <$> (Arrow als p u <$> go bound' PosParam t1 <*> (RetType dims <$> go bound' PosReturn t2)) where bound' = S.fromList dims <> case p of Named p' -> S.insert p' bound Unnamed -> bound onTypeArg bound b (TypeArgDim d loc) = TypeArgDim <$> f bound b d <*> pure loc onTypeArg bound b (TypeArgType t loc) = TypeArgType <$> go bound b t <*> pure loc -- | Return the uniqueness of a type. uniqueness :: TypeBase shape as -> Uniqueness uniqueness (Array _ u _ _) = u uniqueness (Scalar (TypeVar _ u _ _)) = u uniqueness (Scalar (Sum ts)) | any (any unique) ts = Unique uniqueness (Scalar (Record fs)) | any unique fs = Unique uniqueness _ = Nonunique -- | @unique t@ is 'True' if the type of the argument is unique. unique :: TypeBase shape as -> Bool unique = (== Unique) . uniqueness -- | Return the set of all variables mentioned in the aliasing of a -- type. aliases :: Monoid as => TypeBase shape as -> as aliases = bifoldMap (const mempty) id -- | @diet t@ returns a description of how a function parameter of -- type @t@ consumes its argument. diet :: TypeBase shape as -> Diet diet (Scalar (Record ets)) = foldl max Observe $ fmap diet ets diet (Scalar (Prim _)) = Observe diet (Scalar (Arrow {})) = Observe diet (Array _ Unique _ _) = Consume diet (Array _ Nonunique _ _) = Observe diet (Scalar (TypeVar _ Unique _ _)) = Consume diet (Scalar (TypeVar _ Nonunique _ _)) = Observe diet (Scalar (Sum cs)) = foldl max Observe $ foldMap (map diet) cs -- | Convert any type to one that has rank information, no alias -- information, and no embedded names. toStructural :: TypeBase dim as -> TypeBase () () toStructural = flip setAliases () . first (const ()) -- | Remove aliasing information from a type. toStruct :: TypeBase dim as -> TypeBase dim () toStruct t = t `setAliases` () -- | Replace no aliasing with an empty alias set. fromStruct :: TypeBase dim as -> TypeBase dim Aliasing fromStruct t = t `setAliases` S.empty -- | @peelArray n t@ returns the type resulting from peeling the first -- @n@ array dimensions from @t@. Returns @Nothing@ if @t@ has less -- than @n@ dimensions. peelArray :: Int -> TypeBase dim as -> Maybe (TypeBase dim as) peelArray n (Array als u shape t) | shapeRank shape == n = Just $ Scalar t `addAliases` const als | otherwise = Array als u <$> stripDims n shape <*> pure t peelArray _ _ = Nothing -- | @arrayOf u s t@ constructs an array type. The convenience -- compared to using the 'Array' constructor directly is that @t@ can -- itself be an array. If @t@ is an @n@-dimensional array, and @s@ is -- a list of length @n@, the resulting type is of an @n+m@ dimensions. -- The uniqueness of the new array will be @u@, no matter the -- uniqueness of @t@. arrayOf :: Monoid as => Uniqueness -> Shape dim -> TypeBase dim as -> TypeBase dim as arrayOf = arrayOfWithAliases mempty arrayOfWithAliases :: Monoid as => as -> Uniqueness -> Shape dim -> TypeBase dim as -> TypeBase dim as arrayOfWithAliases as2 u shape2 (Array as1 _ shape1 et) = Array (as1 <> as2) u (shape2 <> shape1) et arrayOfWithAliases as u shape (Scalar t) = Array as u shape (second (const ()) t) -- | @stripArray n t@ removes the @n@ outermost layers of the array. -- Essentially, it is the type of indexing an array of type @t@ with -- @n@ indexes. stripArray :: Int -> TypeBase dim as -> TypeBase dim as stripArray n (Array als u shape et) | Just shape' <- stripDims n shape = Array als u shape' et | otherwise = Scalar et `setUniqueness` u `setAliases` als stripArray _ t = t -- | Create a record type corresponding to a tuple with the given -- element types. tupleRecord :: [TypeBase dim as] -> ScalarTypeBase dim as tupleRecord = Record . M.fromList . zip tupleFieldNames -- | Does this type corespond to a tuple? If so, return the elements -- of that tuple. isTupleRecord :: TypeBase dim as -> Maybe [TypeBase dim as] isTupleRecord (Scalar (Record fs)) = areTupleFields fs isTupleRecord _ = Nothing -- | Sort the constructors of a sum type in some well-defined (but not -- otherwise significant) manner. sortConstrs :: M.Map Name a -> [(Name, a)] sortConstrs cs = sortOn fst $ M.toList cs -- | Is this a 'TypeParamType'? isTypeParam :: TypeParamBase vn -> Bool isTypeParam TypeParamType {} = True isTypeParam TypeParamDim {} = False -- | Is this a 'TypeParamDim'? isSizeParam :: TypeParamBase vn -> Bool isSizeParam = not . isTypeParam -- | Combine the shape information of types as much as possible. The first -- argument is the orignal type and the second is the type of the transformed -- expression. This is necessary since the original type may contain additional -- information (e.g., shape restrictions) from the user given annotation. combineTypeShapes :: (Monoid as) => TypeBase Size as -> TypeBase Size as -> TypeBase Size as combineTypeShapes (Scalar (Record ts1)) (Scalar (Record ts2)) | M.keys ts1 == M.keys ts2 = Scalar $ Record $ M.map (uncurry combineTypeShapes) (M.intersectionWith (,) ts1 ts2) combineTypeShapes (Scalar (Sum cs1)) (Scalar (Sum cs2)) | M.keys cs1 == M.keys cs2 = Scalar $ Sum $ M.map (uncurry $ zipWith combineTypeShapes) (M.intersectionWith (,) cs1 cs2) combineTypeShapes (Scalar (Arrow als1 p1 d1 a1 (RetType dims1 b1))) (Scalar (Arrow als2 _p2 _d2 a2 (RetType _ b2))) = Scalar $ Arrow (als1 <> als2) p1 d1 (combineTypeShapes a1 a2) (RetType dims1 (combineTypeShapes b1 b2)) combineTypeShapes (Scalar (TypeVar als1 u1 v targs1)) (Scalar (TypeVar als2 _ _ targs2)) = Scalar $ TypeVar (als1 <> als2) u1 v $ zipWith f targs1 targs2 where f (TypeArgType t1 loc) (TypeArgType t2 _) = TypeArgType (combineTypeShapes t1 t2) loc f targ _ = targ combineTypeShapes (Array als1 u1 shape1 et1) (Array als2 _u2 _shape2 et2) = arrayOfWithAliases (als1 <> als2) u1 shape1 (combineTypeShapes (Scalar et1) (Scalar et2) `setAliases` mempty) combineTypeShapes _ new_tp = new_tp -- | The name, if any. paramName :: PName -> Maybe VName paramName (Named v) = Just v paramName Unnamed = Nothing -- | Match the dimensions of otherwise assumed-equal types. The -- combining function is also passed the names bound within the type -- (from named parameters or return types). matchDims :: forall as m d1 d2. (Monoid as, Monad m) => ([VName] -> d1 -> d2 -> m d1) -> TypeBase d1 as -> TypeBase d2 as -> m (TypeBase d1 as) matchDims onDims = matchDims' mempty where matchDims' :: forall as'. Monoid as' => [VName] -> TypeBase d1 as' -> TypeBase d2 as' -> m (TypeBase d1 as') matchDims' bound t1 t2 = case (t1, t2) of (Array als1 u1 shape1 et1, Array als2 u2 shape2 et2) -> flip setAliases (als1 <> als2) <$> ( arrayOf (min u1 u2) <$> onShapes bound shape1 shape2 <*> matchDims' bound (Scalar et1) (Scalar et2) ) (Scalar (Record f1), Scalar (Record f2)) -> Scalar . Record <$> traverse (uncurry (matchDims' bound)) (M.intersectionWith (,) f1 f2) (Scalar (Sum cs1), Scalar (Sum cs2)) -> Scalar . Sum <$> traverse (traverse (uncurry (matchDims' bound))) (M.intersectionWith zip cs1 cs2) ( Scalar (Arrow als1 p1 d1 a1 (RetType dims1 b1)), Scalar (Arrow als2 p2 _d2 a2 (RetType dims2 b2)) ) -> let bound' = mapMaybe paramName [p1, p2] <> dims1 <> dims2 <> bound in Scalar <$> ( Arrow (als1 <> als2) p1 d1 <$> matchDims' bound' a1 a2 <*> (RetType dims1 <$> matchDims' bound' b1 b2) ) ( Scalar (TypeVar als1 u v targs1), Scalar (TypeVar als2 _ _ targs2) ) -> Scalar . TypeVar (als1 <> als2) u v <$> zipWithM (matchTypeArg bound) targs1 targs2 _ -> pure t1 matchTypeArg _ ta@TypeArgType {} _ = pure ta matchTypeArg bound (TypeArgDim x loc) (TypeArgDim y _) = TypeArgDim <$> onDims bound x y <*> pure loc matchTypeArg _ a _ = pure a onShapes bound shape1 shape2 = Shape <$> zipWithM (onDims bound) (shapeDims shape1) (shapeDims shape2) -- | Set the uniqueness attribute of a type. If the type is a record -- or sum type, the uniqueness of its components will be modified. setUniqueness :: TypeBase dim as -> Uniqueness -> TypeBase dim as setUniqueness (Array als _ shape et) u = Array als u shape et setUniqueness (Scalar (TypeVar als _ t targs)) u = Scalar $ TypeVar als u t targs setUniqueness (Scalar (Record ets)) u = Scalar $ Record $ fmap (`setUniqueness` u) ets setUniqueness (Scalar (Sum ets)) u = Scalar $ Sum $ fmap (map (`setUniqueness` u)) ets setUniqueness t _ = t -- | @t \`setAliases\` als@ returns @t@, but with @als@ substituted for -- any already present aliasing. setAliases :: TypeBase dim asf -> ast -> TypeBase dim ast setAliases t = addAliases t . const -- | @t \`addAliases\` f@ returns @t@, but with any already present -- aliasing replaced by @f@ applied to that aliasing. addAliases :: TypeBase dim asf -> (asf -> ast) -> TypeBase dim ast addAliases = flip second intValueType :: IntValue -> IntType intValueType Int8Value {} = Int8 intValueType Int16Value {} = Int16 intValueType Int32Value {} = Int32 intValueType Int64Value {} = Int64 floatValueType :: FloatValue -> FloatType floatValueType Float16Value {} = Float16 floatValueType Float32Value {} = Float32 floatValueType Float64Value {} = Float64 -- | The type of a basic value. primValueType :: PrimValue -> PrimType primValueType (SignedValue v) = Signed $ intValueType v primValueType (UnsignedValue v) = Unsigned $ intValueType v primValueType (FloatValue v) = FloatType $ floatValueType v primValueType BoolValue {} = Bool -- | The type of an Futhark term. The aliasing will refer to itself, if -- the term is a non-tuple-typed variable. typeOf :: ExpBase Info VName -> PatType typeOf (Literal val _) = Scalar $ Prim $ primValueType val typeOf (IntLit _ (Info t) _) = t typeOf (FloatLit _ (Info t) _) = t typeOf (Parens e _) = typeOf e typeOf (QualParens _ e _) = typeOf e typeOf (TupLit es _) = Scalar $ tupleRecord $ map typeOf es typeOf (RecordLit fs _) = -- Reverse, because M.unions is biased to the left. Scalar $ Record $ M.unions $ reverse $ map record fs where record (RecordFieldExplicit name e _) = M.singleton name $ typeOf e record (RecordFieldImplicit name (Info t) _) = M.singleton (baseName name) $ t `addAliases` S.insert (AliasBound name) typeOf (ArrayLit _ (Info t) _) = t typeOf (StringLit vs _) = Array mempty Nonunique (Shape [ConstSize $ genericLength vs]) (Prim (Unsigned Int8)) typeOf (Project _ _ (Info t) _) = t typeOf (Var _ (Info t) _) = t typeOf (Hole (Info t) _) = t typeOf (Ascript e _ _) = typeOf e typeOf (Negate e _) = typeOf e typeOf (Not e _) = typeOf e typeOf (Update e _ _ _) = typeOf e `setAliases` mempty typeOf (RecordUpdate _ _ _ (Info t) _) = t typeOf (Assert _ e _ _) = typeOf e typeOf (Lambda params _ _ (Info (als, t)) _) = funType params t `setAliases` als typeOf (OpSection _ (Info t) _) = t typeOf (OpSectionLeft _ _ _ (_, Info (pn, pt2)) (Info ret, _) _) = Scalar $ Arrow mempty pn Observe pt2 ret typeOf (OpSectionRight _ _ _ (Info (pn, pt1), _) (Info ret) _) = Scalar $ Arrow mempty pn Observe pt1 ret typeOf (ProjectSection _ (Info t) _) = t typeOf (IndexSection _ (Info t) _) = t typeOf (Constr _ _ (Info t) _) = t typeOf (Attr _ e _) = typeOf e typeOf (AppExp _ (Info res)) = appResType res -- | The type of a function with the given parameters and return type. funType :: [PatBase Info VName] -> StructRetType -> StructType funType params ret = let RetType _ t = foldr (arrow . patternParam) ret params in t where arrow (xp, d, xt) yt = RetType [] $ Scalar $ Arrow () xp d xt' yt where xt' = xt `setUniqueness` Nonunique -- | @foldFunType ts ret@ creates a function type ('Arrow') that takes -- @ts@ as parameters and returns @ret@. foldFunType :: Monoid as => [(Diet, TypeBase dim pas)] -> RetTypeBase dim as -> TypeBase dim as foldFunType ps ret = let RetType _ t = foldr arrow ret ps in t where arrow (d, t1) t2 = RetType [] $ Scalar $ Arrow mempty Unnamed d t1' t2 where t1' = toStruct t1 `setUniqueness` Nonunique foldFunTypeFromParams :: Monoid as => [PatBase Info VName] -> RetTypeBase Size as -> TypeBase Size as foldFunTypeFromParams params = foldFunType (zip (map diet params_ts) params_ts) where params_ts = map patternStructType params -- | Extract the parameter types and return type from a type. -- If the type is not an arrow type, the list of parameter types is empty. unfoldFunType :: TypeBase dim as -> ([(Diet, TypeBase dim ())], TypeBase dim ()) unfoldFunType (Scalar (Arrow _ _ d t1 (RetType _ t2))) = let (ps, r) = unfoldFunType t2 in ((d, t1) : ps, r) unfoldFunType t = ([], toStruct t) -- | The type scheme of a value binding, comprising the type -- parameters and the actual type. valBindTypeScheme :: ValBindBase Info VName -> ([TypeParamBase VName], StructType) valBindTypeScheme vb = ( valBindTypeParams vb, funType (valBindParams vb) (unInfo (valBindRetType vb)) ) -- | The names that are brought into scope by this value binding (not -- including its own parameter names, but including any existential -- sizes). valBindBound :: ValBindBase Info VName -> [VName] valBindBound vb = valBindName vb : case valBindParams vb of [] -> retDims (unInfo (valBindRetType vb)) _ -> [] -- | The type names mentioned in a type. typeVars :: Monoid as => TypeBase dim as -> S.Set VName typeVars t = case t of Scalar Prim {} -> mempty Scalar (TypeVar _ _ tn targs) -> mconcat $ S.singleton (qualLeaf tn) : map typeArgFree targs Scalar (Arrow _ _ _ t1 (RetType _ t2)) -> typeVars t1 <> typeVars t2 Scalar (Record fields) -> foldMap typeVars fields Scalar (Sum cs) -> mconcat $ (foldMap . fmap) typeVars cs Array _ _ _ rt -> typeVars $ Scalar rt where typeArgFree (TypeArgType ta _) = typeVars ta typeArgFree TypeArgDim {} = mempty -- | @orderZero t@ is 'True' if the argument type has order 0, i.e., it is not -- a function type, does not contain a function type as a subcomponent, and may -- not be instantiated with a function type. orderZero :: TypeBase dim as -> Bool orderZero Array {} = True orderZero (Scalar (Prim _)) = True orderZero (Scalar (Record fs)) = all orderZero $ M.elems fs orderZero (Scalar TypeVar {}) = True orderZero (Scalar Arrow {}) = False orderZero (Scalar (Sum cs)) = all (all orderZero) cs -- | @patternOrderZero pat@ is 'True' if all of the types in the given pattern -- have order 0. patternOrderZero :: PatBase Info vn -> Bool patternOrderZero pat = case pat of TuplePat ps _ -> all patternOrderZero ps RecordPat fs _ -> all (patternOrderZero . snd) fs PatParens p _ -> patternOrderZero p Id _ (Info t) _ -> orderZero t Wildcard (Info t) _ -> orderZero t PatAscription p _ _ -> patternOrderZero p PatLit _ (Info t) _ -> orderZero t PatConstr _ _ ps _ -> all patternOrderZero ps PatAttr _ p _ -> patternOrderZero p -- | The set of identifiers bound in a pattern. patIdents :: (Functor f, Ord vn) => PatBase f vn -> S.Set (IdentBase f vn) patIdents (Id v t loc) = S.singleton $ Ident v t loc patIdents (PatParens p _) = patIdents p patIdents (TuplePat pats _) = mconcat $ map patIdents pats patIdents (RecordPat fs _) = mconcat $ map (patIdents . snd) fs patIdents Wildcard {} = mempty patIdents (PatAscription p _ _) = patIdents p patIdents PatLit {} = mempty patIdents (PatConstr _ _ ps _) = mconcat $ map patIdents ps patIdents (PatAttr _ p _) = patIdents p -- | The set of names bound in a pattern. patNames :: (Functor f, Ord vn) => PatBase f vn -> S.Set vn patNames (Id v _ _) = S.singleton v patNames (PatParens p _) = patNames p patNames (TuplePat pats _) = mconcat $ map patNames pats patNames (RecordPat fs _) = mconcat $ map (patNames . snd) fs patNames Wildcard {} = mempty patNames (PatAscription p _ _) = patNames p patNames PatLit {} = mempty patNames (PatConstr _ _ ps _) = mconcat $ map patNames ps patNames (PatAttr _ p _) = patNames p -- | A mapping from names bound in a map to their identifier. patternMap :: (Functor f) => PatBase f VName -> M.Map VName (IdentBase f VName) patternMap pat = M.fromList $ zip (map identName idents) idents where idents = S.toList $ patIdents pat -- | The type of values bound by the pattern. patternType :: PatBase Info VName -> PatType patternType (Wildcard (Info t) _) = t patternType (PatParens p _) = patternType p patternType (Id _ (Info t) _) = t patternType (TuplePat pats _) = Scalar $ tupleRecord $ map patternType pats patternType (RecordPat fs _) = Scalar $ Record $ patternType <$> M.fromList fs patternType (PatAscription p _ _) = patternType p patternType (PatLit _ (Info t) _) = t patternType (PatConstr _ (Info t) _ _) = t patternType (PatAttr _ p _) = patternType p -- | The type matched by the pattern, including shape declarations if present. patternStructType :: PatBase Info VName -> StructType patternStructType = toStruct . patternType -- | When viewed as a function parameter, does this pattern correspond -- to a named parameter of some type? patternParam :: PatBase Info VName -> (PName, Diet, StructType) patternParam (PatParens p _) = patternParam p patternParam (PatAttr _ p _) = patternParam p patternParam (PatAscription (Id v (Info t) _) _ _) = (Named v, diet t, toStruct t) patternParam (Id v (Info t) _) = (Named v, diet t, toStruct t) patternParam p = (Unnamed, diet p_t, p_t) where p_t = patternStructType p -- | Names of primitive types to types. This is only valid if no -- shadowing is going on, but useful for tools. namesToPrimTypes :: M.Map Name PrimType namesToPrimTypes = M.fromList [ (nameFromString $ prettyString t, t) | t <- Bool : map Signed [minBound .. maxBound] ++ map Unsigned [minBound .. maxBound] ++ map FloatType [minBound .. maxBound] ] -- | The nature of something predefined. For functions, these can -- either be monomorphic or overloaded. An overloaded builtin is a -- list valid types it can be instantiated with, to the parameter and -- result type, with 'Nothing' representing the overloaded parameter -- type. data Intrinsic = IntrinsicMonoFun [PrimType] PrimType | IntrinsicOverloadedFun [PrimType] [Maybe PrimType] (Maybe PrimType) | IntrinsicPolyFun [TypeParamBase VName] [(Diet, StructType)] (RetTypeBase Size ()) | IntrinsicType Liftedness [TypeParamBase VName] StructType | IntrinsicEquality -- Special cased. intrinsicAcc :: (VName, Intrinsic) intrinsicAcc = ( acc_v, IntrinsicType SizeLifted [TypeParamType Unlifted t_v mempty] $ Scalar $ TypeVar () Nonunique (qualName acc_v) [arg] ) where acc_v = VName "acc" 10 t_v = VName "t" 11 arg = TypeArgType (Scalar (TypeVar () Nonunique (qualName t_v) [])) mempty -- | A map of all built-ins. intrinsics :: M.Map VName Intrinsic intrinsics = (M.fromList [intrinsicAcc] <>) $ M.fromList $ zipWith namify [20 ..] $ map primFun (M.toList Primitive.primFuns) ++ map unOpFun Primitive.allUnOps ++ map binOpFun Primitive.allBinOps ++ map cmpOpFun Primitive.allCmpOps ++ map convOpFun Primitive.allConvOps ++ map signFun Primitive.allIntTypes ++ map unsignFun Primitive.allIntTypes ++ map intrinsicPrim ( map Signed [minBound .. maxBound] ++ map Unsigned [minBound .. maxBound] ++ map FloatType [minBound .. maxBound] ++ [Bool] ) ++ -- This overrides the ! from Primitive. [ ( "!", IntrinsicOverloadedFun ( map Signed [minBound .. maxBound] ++ map Unsigned [minBound .. maxBound] ++ [Bool] ) [Nothing] Nothing ) ] ++ -- The reason for the loop formulation is to ensure that we -- get a missing case warning if we forget a case. mapMaybe mkIntrinsicBinOp [minBound .. maxBound] ++ [ ( "flatten", IntrinsicPolyFun [tp_a, sp_n, sp_m] [(Observe, Array () Nonunique (shape [n, m]) t_a)] $ RetType [k] $ Array () Nonunique (shape [k]) t_a ), ( "unflatten", IntrinsicPolyFun [tp_a, sp_n] [ (Observe, Scalar $ Prim $ Signed Int64), (Observe, Scalar $ Prim $ Signed Int64), (Observe, Array () Nonunique (shape [n]) t_a) ] $ RetType [k, m] $ Array () Nonunique (shape [k, m]) t_a ), ( "concat", IntrinsicPolyFun [tp_a, sp_n, sp_m] [ (Observe, array_a $ shape [n]), (Observe, array_a $ shape [m]) ] $ RetType [k] $ uarray_a $ shape [k] ), ( "rotate", IntrinsicPolyFun [tp_a, sp_n] [ (Observe, Scalar $ Prim $ Signed Int64), (Observe, array_a $ shape [n]) ] $ RetType [] $ array_a $ shape [n] ), ( "transpose", IntrinsicPolyFun [tp_a, sp_n, sp_m] [(Observe, array_a $ shape [n, m])] $ RetType [] $ array_a $ shape [m, n] ), ( "scatter", IntrinsicPolyFun [tp_a, sp_n, sp_l] [ (Consume, Array () Unique (shape [n]) t_a), (Observe, Array () Nonunique (shape [l]) (Prim $ Signed Int64)), (Observe, Array () Nonunique (shape [l]) t_a) ] $ RetType [] $ Array () Unique (shape [n]) t_a ), ( "scatter_2d", IntrinsicPolyFun [tp_a, sp_n, sp_m, sp_l] [ (Consume, uarray_a $ shape [n, m]), (Observe, Array () Nonunique (shape [l]) (tupInt64 2)), (Observe, Array () Nonunique (shape [l]) t_a) ] $ RetType [] $ uarray_a $ shape [n, m] ), ( "scatter_3d", IntrinsicPolyFun [tp_a, sp_n, sp_m, sp_k, sp_l] [ (Consume, uarray_a $ shape [n, m, k]), (Observe, Array () Nonunique (shape [l]) (tupInt64 3)), (Observe, Array () Nonunique (shape [l]) t_a) ] $ RetType [] $ uarray_a $ shape [n, m, k] ), ( "zip", IntrinsicPolyFun [tp_a, tp_b, sp_n] [ (Observe, array_a (shape [n])), (Observe, array_b (shape [n])) ] $ RetType [] $ tuple_uarray (Scalar t_a) (Scalar t_b) $ shape [n] ), ( "unzip", IntrinsicPolyFun [tp_a, tp_b, sp_n] [(Observe, tuple_arr (Scalar t_a) (Scalar t_b) $ shape [n])] $ RetType [] . Scalar . Record . M.fromList $ zip tupleFieldNames [array_a $ shape [n], array_b $ shape [n]] ), ( "hist_1d", IntrinsicPolyFun [tp_a, sp_n, sp_m] [ (Consume, Scalar $ Prim $ Signed Int64), (Observe, uarray_a $ shape [m]), (Observe, Scalar t_a `arr` (Scalar t_a `arr` Scalar t_a)), (Observe, Scalar t_a), (Observe, Array () Nonunique (shape [n]) (tupInt64 1)), (Observe, array_a (shape [n])) ] $ RetType [] $ uarray_a $ shape [m] ), ( "hist_2d", IntrinsicPolyFun [tp_a, sp_n, sp_m, sp_k] [ (Observe, Scalar $ Prim $ Signed Int64), (Consume, uarray_a $ shape [m, k]), (Observe, Scalar t_a `arr` (Scalar t_a `arr` Scalar t_a)), (Observe, Scalar t_a), (Observe, Array () Nonunique (shape [n]) (tupInt64 2)), (Observe, array_a (shape [n])) ] $ RetType [] $ uarray_a $ shape [m, k] ), ( "hist_3d", IntrinsicPolyFun [tp_a, sp_n, sp_m, sp_k, sp_l] [ (Observe, Scalar $ Prim $ Signed Int64), (Consume, uarray_a $ shape [m, k, l]), (Observe, Scalar t_a `arr` (Scalar t_a `arr` Scalar t_a)), (Observe, Scalar t_a), (Observe, Array () Nonunique (shape [n]) (tupInt64 3)), (Observe, array_a (shape [n])) ] $ RetType [] $ uarray_a $ shape [m, k, l] ), ( "map", IntrinsicPolyFun [tp_a, tp_b, sp_n] [ (Observe, Scalar t_a `arr` Scalar t_b), (Observe, array_a $ shape [n]) ] $ RetType [] $ uarray_b $ shape [n] ), ( "reduce", IntrinsicPolyFun [tp_a, sp_n] [ (Observe, Scalar t_a `arr` (Scalar t_a `arr` Scalar t_a)), (Observe, Scalar t_a), (Observe, array_a $ shape [n]) ] $ RetType [] $ Scalar t_a ), ( "reduce_comm", IntrinsicPolyFun [tp_a, sp_n] [ (Observe, Scalar t_a `arr` (Scalar t_a `arr` Scalar t_a)), (Observe, Scalar t_a), (Observe, array_a $ shape [n]) ] $ RetType [] $ Scalar t_a ), ( "scan", IntrinsicPolyFun [tp_a, sp_n] [ (Observe, Scalar t_a `arr` (Scalar t_a `arr` Scalar t_a)), (Observe, Scalar t_a), (Observe, array_a $ shape [n]) ] $ RetType [] $ uarray_a $ shape [n] ), ( "partition", IntrinsicPolyFun [tp_a, sp_n] [ (Observe, Scalar (Prim $ Signed Int32)), (Observe, Scalar t_a `arr` Scalar (Prim $ Signed Int64)), (Observe, array_a $ shape [n]) ] ( RetType [m] . Scalar $ tupleRecord [ uarray_a $ shape [k], Array () Unique (shape [n]) (Prim $ Signed Int64) ] ) ), ( "acc_write", IntrinsicPolyFun [sp_k, tp_a] [ (Consume, Scalar $ accType array_ka), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar t_a) ] $ RetType [] $ Scalar $ accType array_ka ), ( "scatter_stream", IntrinsicPolyFun [tp_a, tp_b, sp_k, sp_n] [ (Consume, uarray_ka), ( Observe, Scalar (accType array_ka) `carr` ( Scalar t_b `arr` Scalar (accType $ array_a $ shape [k]) ) ), (Observe, array_b $ shape [n]) ] $ RetType [] uarray_ka ), ( "hist_stream", IntrinsicPolyFun [tp_a, tp_b, sp_k, sp_n] [ (Consume, uarray_a $ shape [k]), (Observe, Scalar t_a `arr` (Scalar t_a `arr` Scalar t_a)), (Observe, Scalar t_a), ( Observe, Scalar (accType array_ka) `carr` ( Scalar t_b `arr` Scalar (accType $ array_a $ shape [k]) ) ), (Observe, array_b $ shape [n]) ] $ RetType [] $ uarray_a $ shape [k] ), ( "jvp2", IntrinsicPolyFun [tp_a, tp_b] [ (Observe, Scalar t_a `arr` Scalar t_b), (Observe, Scalar t_a), (Observe, Scalar t_a) ] $ RetType [] $ Scalar $ tupleRecord [Scalar t_b, Scalar t_b] ), ( "vjp2", IntrinsicPolyFun [tp_a, tp_b] [ (Observe, Scalar t_a `arr` Scalar t_b), (Observe, Scalar t_a), (Observe, Scalar t_b) ] $ RetType [] $ Scalar $ tupleRecord [Scalar t_b, Scalar t_a] ) ] ++ -- Experimental LMAD ones. [ ( "flat_index_2d", IntrinsicPolyFun [tp_a, sp_n] [ (Observe, array_a $ shape [n]), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)) ] $ RetType [m, k] $ array_a $ shape [m, k] ), ( "flat_update_2d", IntrinsicPolyFun [tp_a, sp_n, sp_k, sp_l] [ (Consume, uarray_a $ shape [n]), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, array_a $ shape [k, l]) ] $ RetType [] $ uarray_a $ shape [n] ), ( "flat_index_3d", IntrinsicPolyFun [tp_a, sp_n] [ (Observe, array_a $ shape [n]), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)) ] $ RetType [m, k, l] $ array_a $ shape [m, k, l] ), ( "flat_update_3d", IntrinsicPolyFun [tp_a, sp_n, sp_k, sp_l, sp_p] [ (Consume, uarray_a $ shape [n]), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, array_a $ shape [k, l, p]) ] $ RetType [] $ uarray_a $ shape [n] ), ( "flat_index_4d", IntrinsicPolyFun [tp_a, sp_n] [ (Observe, array_a $ shape [n]), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)) ] $ RetType [m, k, l, p] $ array_a $ shape [m, k, l, p] ), ( "flat_update_4d", IntrinsicPolyFun [tp_a, sp_n, sp_k, sp_l, sp_p, sp_q] [ (Consume, uarray_a $ shape [n]), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, Scalar (Prim $ Signed Int64)), (Observe, array_a $ shape [k, l, p, q]) ] $ RetType [] $ uarray_a $ shape [n] ) ] where [a, b, n, m, k, l, p, q] = zipWith VName (map nameFromString ["a", "b", "n", "m", "k", "l", "p", "q"]) [0 ..] t_a = TypeVar () Nonunique (qualName a) [] array_a s = Array () Nonunique s t_a uarray_a s = Array () Unique s t_a tp_a = TypeParamType Unlifted a mempty t_b = TypeVar () Nonunique (qualName b) [] array_b s = Array () Nonunique s t_b uarray_b s = Array () Unique s t_b tp_b = TypeParamType Unlifted b mempty [sp_n, sp_m, sp_k, sp_l, sp_p, sp_q] = map (`TypeParamDim` mempty) [n, m, k, l, p, q] shape = Shape . map (NamedSize . qualName) tuple_arr x y s = Array () Nonunique s (Record (M.fromList $ zip tupleFieldNames [x, y])) tuple_uarray x y s = tuple_arr x y s `setUniqueness` Unique arr x y = Scalar $ Arrow mempty Unnamed Observe x (RetType [] y) carr x y = Scalar $ Arrow mempty Unnamed Consume x (RetType [] y) array_ka = Array () Nonunique (Shape [NamedSize $ qualName k]) t_a uarray_ka = Array () Unique (Shape [NamedSize $ qualName k]) t_a accType t = TypeVar () Unique (qualName (fst intrinsicAcc)) [TypeArgType t mempty] namify i (x, y) = (VName (nameFromString x) i, y) primFun (name, (ts, t, _)) = (name, IntrinsicMonoFun (map unPrim ts) $ unPrim t) unOpFun bop = (prettyString bop, IntrinsicMonoFun [t] t) where t = unPrim $ Primitive.unOpType bop binOpFun bop = (prettyString bop, IntrinsicMonoFun [t, t] t) where t = unPrim $ Primitive.binOpType bop cmpOpFun bop = (prettyString bop, IntrinsicMonoFun [t, t] Bool) where t = unPrim $ Primitive.cmpOpType bop convOpFun cop = (prettyString cop, IntrinsicMonoFun [unPrim ft] $ unPrim tt) where (ft, tt) = Primitive.convOpType cop signFun t = ("sign_" ++ prettyString t, IntrinsicMonoFun [Unsigned t] $ Signed t) unsignFun t = ("unsign_" ++ prettyString t, IntrinsicMonoFun [Signed t] $ Unsigned t) unPrim (Primitive.IntType t) = Signed t unPrim (Primitive.FloatType t) = FloatType t unPrim Primitive.Bool = Bool unPrim Primitive.Unit = Bool intrinsicPrim t = (prettyString t, IntrinsicType Unlifted [] $ Scalar $ Prim t) anyIntType = map Signed [minBound .. maxBound] ++ map Unsigned [minBound .. maxBound] anyNumberType = anyIntType ++ map FloatType [minBound .. maxBound] anyPrimType = Bool : anyNumberType mkIntrinsicBinOp :: BinOp -> Maybe (String, Intrinsic) mkIntrinsicBinOp op = do op' <- intrinsicBinOp op pure (prettyString op, op') binOp ts = Just $ IntrinsicOverloadedFun ts [Nothing, Nothing] Nothing ordering = Just $ IntrinsicOverloadedFun anyPrimType [Nothing, Nothing] (Just Bool) intrinsicBinOp Plus = binOp anyNumberType intrinsicBinOp Minus = binOp anyNumberType intrinsicBinOp Pow = binOp anyNumberType intrinsicBinOp Times = binOp anyNumberType intrinsicBinOp Divide = binOp anyNumberType intrinsicBinOp Mod = binOp anyNumberType intrinsicBinOp Quot = binOp anyIntType intrinsicBinOp Rem = binOp anyIntType intrinsicBinOp ShiftR = binOp anyIntType intrinsicBinOp ShiftL = binOp anyIntType intrinsicBinOp Band = binOp anyIntType intrinsicBinOp Xor = binOp anyIntType intrinsicBinOp Bor = binOp anyIntType intrinsicBinOp LogAnd = binOp [Bool] intrinsicBinOp LogOr = binOp [Bool] intrinsicBinOp Equal = Just IntrinsicEquality intrinsicBinOp NotEqual = Just IntrinsicEquality intrinsicBinOp Less = ordering intrinsicBinOp Leq = ordering intrinsicBinOp Greater = ordering intrinsicBinOp Geq = ordering intrinsicBinOp _ = Nothing tupInt64 1 = Prim $ Signed Int64 tupInt64 x = tupleRecord $ replicate x $ Scalar $ Prim $ Signed Int64 -- | Is this include part of the built-in prelude? isBuiltin :: FilePath -> Bool isBuiltin = (== "/prelude") . takeDirectory -- | Is the position of this thing builtin as per 'isBuiltin'? Things -- without location are considered not built-in. isBuiltinLoc :: Located a => a -> Bool isBuiltinLoc x = case locOf x of NoLoc -> False Loc pos _ -> isBuiltin $ posFile pos -- | The largest tag used by an intrinsic - this can be used to -- determine whether a 'VName' refers to an intrinsic or a user-defined name. maxIntrinsicTag :: Int maxIntrinsicTag = maxinum $ map baseTag $ M.keys intrinsics -- | Create a name with no qualifiers from a name. qualName :: v -> QualName v qualName = QualName [] -- | Add another qualifier (at the head) to a qualified name. qualify :: v -> QualName v -> QualName v qualify k (QualName ks v) = QualName (k : ks) v -- | The modules imported by a Futhark program. progImports :: ProgBase f vn -> [(String, Loc)] progImports = concatMap decImports . progDecs -- | The modules imported by a single declaration. decImports :: DecBase f vn -> [(String, Loc)] decImports (OpenDec x _) = modExpImports x decImports (ModDec md) = modExpImports $ modExp md decImports SigDec {} = [] decImports TypeDec {} = [] decImports ValDec {} = [] decImports (LocalDec d _) = decImports d decImports (ImportDec x _ loc) = [(x, locOf loc)] modExpImports :: ModExpBase f vn -> [(String, Loc)] modExpImports ModVar {} = [] modExpImports (ModParens p _) = modExpImports p modExpImports (ModImport f _ loc) = [(f, locOf loc)] modExpImports (ModDecs ds _) = concatMap decImports ds modExpImports (ModApply _ me _ _ _) = modExpImports me modExpImports (ModAscript me _ _ _) = modExpImports me modExpImports ModLambda {} = [] -- | The set of module types used in any exported (non-local) -- declaration. progModuleTypes :: ProgBase Info VName -> S.Set VName progModuleTypes prog = foldMap reach mtypes_used where -- Fixed point iteration. reach v = S.singleton v <> maybe mempty (foldMap reach) (M.lookup v reachable_from_mtype) reachable_from_mtype = foldMap onDec $ progDecs prog where onDec OpenDec {} = mempty onDec ModDec {} = mempty onDec (SigDec sb) = M.singleton (sigName sb) (onSigExp (sigExp sb)) onDec TypeDec {} = mempty onDec ValDec {} = mempty onDec (LocalDec d _) = onDec d onDec ImportDec {} = mempty onSigExp (SigVar v _ _) = S.singleton $ qualLeaf v onSigExp (SigParens e _) = onSigExp e onSigExp (SigSpecs ss _) = foldMap onSpec ss onSigExp (SigWith e _ _) = onSigExp e onSigExp (SigArrow _ e1 e2 _) = onSigExp e1 <> onSigExp e2 onSpec ValSpec {} = mempty onSpec TypeSpec {} = mempty onSpec TypeAbbrSpec {} = mempty onSpec (ModSpec vn e _ _) = S.singleton vn <> onSigExp e onSpec (IncludeSpec e _) = onSigExp e mtypes_used = foldMap onDec $ progDecs prog where onDec (OpenDec x _) = onModExp x onDec (ModDec md) = maybe mempty (onSigExp . fst) (modSignature md) <> onModExp (modExp md) onDec SigDec {} = mempty onDec TypeDec {} = mempty onDec ValDec {} = mempty onDec LocalDec {} = mempty onDec ImportDec {} = mempty onModExp ModVar {} = mempty onModExp (ModParens p _) = onModExp p onModExp ModImport {} = mempty onModExp (ModDecs ds _) = mconcat $ map onDec ds onModExp (ModApply me1 me2 _ _ _) = onModExp me1 <> onModExp me2 onModExp (ModAscript me se _ _) = onModExp me <> onSigExp se onModExp (ModLambda p r me _) = onModParam p <> maybe mempty (onSigExp . fst) r <> onModExp me onModParam = onSigExp . modParamType onSigExp (SigVar v _ _) = S.singleton $ qualLeaf v onSigExp (SigParens e _) = onSigExp e onSigExp SigSpecs {} = mempty onSigExp (SigWith e _ _) = onSigExp e onSigExp (SigArrow _ e1 e2 _) = onSigExp e1 <> onSigExp e2 -- | Extract a leading @((name, namespace, file), remainder)@ from a -- documentation comment string. These are formatted as -- \`name\`\@namespace[\@file]. Let us hope that this pattern does not occur -- anywhere else. identifierReference :: String -> Maybe ((String, String, Maybe FilePath), String) identifierReference ('`' : s) | (identifier, '`' : '@' : s') <- break (== '`') s, (namespace, s'') <- span isAlpha s', not $ null namespace = case s'' of '@' : '"' : s''' | (file, '"' : s'''') <- span (/= '"') s''' -> Just ((identifier, namespace, Just file), s'''') _ -> Just ((identifier, namespace, Nothing), s'') identifierReference _ = Nothing -- | Given an operator name, return the operator that determines its -- syntactical properties. leadingOperator :: Name -> BinOp leadingOperator s = maybe Backtick snd $ find ((`isPrefixOf` s') . fst) $ sortOn (Down . length . fst) $ zip (map prettyString operators) operators where s' = nameToString s operators :: [BinOp] operators = [minBound .. maxBound :: BinOp] -- | Find instances of typed holes in the program. progHoles :: ProgBase Info VName -> [(Loc, StructType)] progHoles = foldMap holesInDec . progDecs where holesInDec (ValDec vb) = holesInExp $ valBindBody vb holesInDec (ModDec me) = holesInModExp $ modExp me holesInDec (OpenDec me _) = holesInModExp me holesInDec (LocalDec d _) = holesInDec d holesInDec TypeDec {} = mempty holesInDec SigDec {} = mempty holesInDec ImportDec {} = mempty holesInModExp (ModDecs ds _) = foldMap holesInDec ds holesInModExp (ModParens me _) = holesInModExp me holesInModExp (ModApply x y _ _ _) = holesInModExp x <> holesInModExp y holesInModExp (ModAscript me _ _ _) = holesInModExp me holesInModExp (ModLambda _ _ me _) = holesInModExp me holesInModExp ModVar {} = mempty holesInModExp ModImport {} = mempty holesInExp = flip execState mempty . onExp onExp e@(Hole (Info t) loc) = do modify ((locOf loc, toStruct t) :) pure e onExp e = astMap (identityMapper {mapOnExp = onExp}) e -- | A type with no aliasing information but shape annotations. type UncheckedType = TypeBase (Shape Name) () -- | An expression with no type annotations. type UncheckedTypeExp = TypeExp NoInfo Name -- | An identifier with no type annotations. type UncheckedIdent = IdentBase NoInfo Name -- | An index with no type annotations. type UncheckedDimIndex = DimIndexBase NoInfo Name -- | A slice with no type annotations. type UncheckedSlice = SliceBase NoInfo Name -- | An expression with no type annotations. type UncheckedExp = ExpBase NoInfo Name -- | A module expression with no type annotations. type UncheckedModExp = ModExpBase NoInfo Name -- | A module type expression with no type annotations. type UncheckedSigExp = SigExpBase NoInfo Name -- | A type parameter with no type annotations. type UncheckedTypeParam = TypeParamBase Name -- | A pattern with no type annotations. type UncheckedPat = PatBase NoInfo Name -- | A function declaration with no type annotations. type UncheckedValBind = ValBindBase NoInfo Name -- | A declaration with no type annotations. type UncheckedDec = DecBase NoInfo Name -- | A spec with no type annotations. type UncheckedSpec = SpecBase NoInfo Name -- | A Futhark program with no type annotations. type UncheckedProg = ProgBase NoInfo Name -- | A case (of a match expression) with no type annotations. type UncheckedCase = CaseBase NoInfo Name