module Futhark.CodeGen.ImpGen.Multicore.SegHist ( compileSegHist, ) where import Control.Monad import Data.List (zip4) import Data.Maybe (listToMaybe) import Futhark.CodeGen.ImpCode.Multicore qualified as Imp import Futhark.CodeGen.ImpGen import Futhark.CodeGen.ImpGen.Multicore.Base import Futhark.CodeGen.ImpGen.Multicore.SegRed (compileSegRed') import Futhark.IR.MCMem import Futhark.Transform.Rename (renameLambda) import Futhark.Util (chunks, splitFromEnd, takeLast) import Futhark.Util.IntegralExp (rem) import Prelude hiding (quot, rem) compileSegHist :: Pat LetDecMem -> SegSpace -> [HistOp MCMem] -> KernelBody MCMem -> TV Int32 -> MulticoreGen Imp.MCCode compileSegHist pat space histops kbody nsubtasks | [_] <- unSegSpace space = nonsegmentedHist pat space histops kbody nsubtasks | otherwise = segmentedHist pat space histops kbody -- | Split some list into chunks equal to the number of values -- returned by each 'SegBinOp' segHistOpChunks :: [HistOp rep] -> [a] -> [[a]] segHistOpChunks = chunks . map (length . histNeutral) histSize :: HistOp MCMem -> Imp.TExp Int64 histSize = product . map pe64 . shapeDims . histShape genHistOpParams :: HistOp MCMem -> MulticoreGen () genHistOpParams histops = dScope Nothing $ scopeOfLParams $ lambdaParams $ histOp histops renameHistop :: HistOp MCMem -> MulticoreGen (HistOp MCMem) renameHistop histop = do let op = histOp histop lambda' <- renameLambda op pure histop {histOp = lambda'} nonsegmentedHist :: Pat LetDecMem -> SegSpace -> [HistOp MCMem] -> KernelBody MCMem -> TV Int32 -> MulticoreGen Imp.MCCode nonsegmentedHist pat space histops kbody num_histos = do let ns = map snd $ unSegSpace space ns_64 = map pe64 ns num_histos' = tvExp num_histos hist_width = maybe 0 histSize $ listToMaybe histops use_subhistogram = sExt64 num_histos' * hist_width .<=. product ns_64 histops' <- renameHistOpLambda histops -- Only do something if there is actually input. collect $ sUnless (product ns_64 .==. 0) $ do sIf use_subhistogram (subHistogram pat space histops num_histos kbody) (atomicHistogram pat space histops' kbody) -- | -- Atomic Histogram approach -- The implementation has three sub-strategies depending on the -- type of the operator -- 1. If values are integral scalars, a direct-supported atomic update is used. -- 2. If values are on one memory location, e.g. a float, then a -- CAS operation is used to perform the update, where the float is -- casted to an integral scalar. -- 1. and 2. currently only works for 32-bit and 64-bit types, -- but GCC has support for 8-, 16- and 128- bit types as well. -- 3. Otherwise a locking based approach is used onOpAtomic :: HistOp MCMem -> MulticoreGen ([VName] -> [Imp.TExp Int64] -> MulticoreGen ()) onOpAtomic op = do atomics <- hostAtomics <$> askEnv let lambda = histOp op do_op = atomicUpdateLocking atomics lambda case do_op of AtomicPrim f -> pure f AtomicCAS f -> pure f AtomicLocking f -> do -- Allocate a static array of locks -- as in the GPU backend let num_locks = 100151 -- This number is taken from the GPU backend dims = map pe64 $ shapeDims (histOpShape op <> histShape op) locks <- sStaticArray "hist_locks" int32 $ Imp.ArrayZeros num_locks let l' = Locking locks 0 1 0 (pure . (`rem` fromIntegral num_locks) . flattenIndex dims) pure $ f l' atomicHistogram :: Pat LetDecMem -> SegSpace -> [HistOp MCMem] -> KernelBody MCMem -> MulticoreGen () atomicHistogram pat space histops kbody = do let (is, ns) = unzip $ unSegSpace space ns_64 = map pe64 ns let num_red_res = length histops + sum (map (length . histNeutral) histops) (all_red_pes, map_pes) = splitAt num_red_res $ patElems pat atomicOps <- mapM onOpAtomic histops body <- collect $ do dPrim_ (segFlat space) int64 sOp $ Imp.GetTaskId (segFlat space) generateChunkLoop "SegHist" Scalar $ \flat_idx -> do zipWithM_ dPrimV_ is $ unflattenIndex ns_64 flat_idx compileStms mempty (kernelBodyStms kbody) $ do let (red_res, map_res) = splitFromEnd (length map_pes) $ kernelBodyResult kbody red_res_split = splitHistResults histops $ map kernelResultSubExp red_res let pes_per_op = chunks (map (length . histDest) histops) all_red_pes forM_ (zip4 histops red_res_split atomicOps pes_per_op) $ \(HistOp dest_shape _ _ _ shape lam, (bucket, vs'), do_op, dest_res) -> do let (_is_params, vs_params) = splitAt (length vs') $ lambdaParams lam dest_shape' = map pe64 $ shapeDims dest_shape bucket' = map pe64 bucket bucket_in_bounds = inBounds (Slice (map DimFix bucket')) dest_shape' sComment "save map-out results" $ forM_ (zip map_pes map_res) $ \(pe, res) -> copyDWIMFix (patElemName pe) (map Imp.le64 is) (kernelResultSubExp res) [] sComment "perform updates" $ sWhen bucket_in_bounds $ do let bucket_is = map Imp.le64 (init is) ++ bucket' dLParams $ lambdaParams lam sLoopNest shape $ \is' -> do forM_ (zip vs_params vs') $ \(p, res) -> copyDWIMFix (paramName p) [] res is' do_op (map patElemName dest_res) (bucket_is ++ is') free_params <- freeParams body emit $ Imp.Op $ Imp.ParLoop "atomic_seg_hist" body free_params updateHisto :: HistOp MCMem -> [VName] -> [Imp.TExp Int64] -> Imp.TExp Int64 -> [Param LParamMem] -> MulticoreGen () updateHisto op arrs bucket j uni_acc = do let bind_acc_params = forM_ (zip uni_acc arrs) $ \(acc_u, arr) -> do copyDWIMFix (paramName acc_u) [] (Var arr) bucket op_body = compileBody' [] $ lambdaBody $ histOp op writeArray arr val = extractVectorLane j $ collect $ copyDWIMFix arr bucket val [] do_hist = zipWithM_ writeArray arrs $ map resSubExp $ bodyResult $ lambdaBody $ histOp op sComment "Start of body" $ do bind_acc_params op_body do_hist -- Generates num_histos sub-histograms of the size -- of the destination histogram -- Then for each chunk of the input each subhistogram -- is computed and finally combined through a segmented reduction -- across the histogram indicies. -- This is expected to be fast if len(histDest) is small subHistogram :: Pat LetDecMem -> SegSpace -> [HistOp MCMem] -> TV Int32 -> KernelBody MCMem -> MulticoreGen () subHistogram pat space histops num_histos kbody = do emit $ Imp.DebugPrint "subHistogram segHist" Nothing let (is, ns) = unzip $ unSegSpace space ns_64 = map pe64 ns let pes = patElems pat num_red_res = length histops + sum (map (length . histNeutral) histops) map_pes = drop num_red_res pes per_red_pes = segHistOpChunks histops $ patElems pat -- Allocate array of subhistograms in the calling thread. Each -- tasks will work in its own private allocations (to avoid false -- sharing), but this is where they will ultimately copy their -- results. global_subhistograms <- forM histops $ \histop -> forM (histType histop) $ \t -> do let shape = Shape [tvSize num_histos] <> arrayShape t sAllocArray "subhistogram" (elemType t) shape DefaultSpace let tid' = Imp.le64 $ segFlat space -- Generate loop body of parallel function body <- collect $ do dPrim_ (segFlat space) int64 sOp $ Imp.GetTaskId (segFlat space) local_subhistograms <- forM (zip per_red_pes histops) $ \(pes', histop) -> do op_local_subhistograms <- forM (histType histop) $ \t -> sAllocArray "subhistogram" (elemType t) (arrayShape t) DefaultSpace forM_ (zip3 pes' op_local_subhistograms (histNeutral histop)) $ \(pe, hist, ne) -> -- First thread initializes histogram with dest vals. Others -- initialize with neutral element sIf (tid' .==. 0) (copyDWIMFix hist [] (Var $ patElemName pe) []) ( sLoopNest (histShape histop) $ \shape_is -> sLoopNest (histOpShape histop) $ \vec_is -> copyDWIMFix hist (shape_is <> vec_is) ne [] ) pure op_local_subhistograms inISPC $ generateChunkLoop "SegRed" Vectorized $ \i -> do zipWithM_ dPrimV_ is $ unflattenIndex ns_64 i compileStms mempty (kernelBodyStms kbody) $ do let (red_res, map_res) = splitFromEnd (length map_pes) $ map kernelResultSubExp $ kernelBodyResult kbody sComment "save map-out results" $ forM_ (zip map_pes map_res) $ \(pe, res) -> copyDWIMFix (patElemName pe) (map Imp.le64 is) res [] forM_ (zip3 histops local_subhistograms (splitHistResults histops red_res)) $ \( histop@(HistOp dest_shape _ _ _ shape _), histop_subhistograms, (bucket, vs') ) -> do histop' <- renameHistop histop let bucket' = map pe64 bucket dest_shape' = map pe64 $ shapeDims dest_shape acc_params' = (lambdaParams . histOp) histop' vs_params' = takeLast (length vs') $ lambdaParams $ histOp histop' generateUniformizeLoop $ \j -> sComment "perform updates" $ do -- Create new set of uniform buckets -- That is extract each bucket from a SIMD vector lane extract_buckets <- mapM (dPrimSV "extract_bucket" . (primExpType . untyped)) bucket' forM_ (zip extract_buckets bucket') $ \(x, y) -> emit $ Imp.Op $ Imp.ExtractLane (tvVar x) (untyped y) (untyped j) let bucket'' = map tvExp extract_buckets bucket_in_bounds = inBounds (Slice (map DimFix bucket'')) dest_shape' sWhen bucket_in_bounds $ do genHistOpParams histop' sLoopNest shape $ \is' -> do -- read values vs and perform lambda writing result back to is forM_ (zip vs_params' vs') $ \(p, res) -> ifPrimType (paramType p) $ \pt -> do -- Hack to copy varying load into uniform result variable tmp <- dPrimS "tmp" pt copyDWIMFix tmp [] res is' extractVectorLane j . pure $ Imp.SetScalar (paramName p) (toExp' pt tmp) updateHisto histop' histop_subhistograms (bucket'' ++ is') j acc_params' -- Copy the task-local subhistograms to the global subhistograms, -- where they will be combined. forM_ (zip (concat global_subhistograms) (concat local_subhistograms)) $ \(global, local) -> copyDWIMFix global [tid'] (Var local) [] free_params <- freeParams body emit $ Imp.Op $ Imp.ParLoop "seghist_stage_1" body free_params -- Perform a segmented reduction over the subhistograms forM_ (zip3 per_red_pes global_subhistograms histops) $ \(red_pes, hists, op) -> do bucket_ids <- replicateM (shapeRank (histShape op)) (newVName "bucket_id") subhistogram_id <- newVName "subhistogram_id" let segred_space = SegSpace (segFlat space) $ segment_dims ++ zip bucket_ids (shapeDims (histShape op)) ++ [(subhistogram_id, tvSize num_histos)] segred_op = SegBinOp Noncommutative (histOp op) (histNeutral op) (histOpShape op) red_code <- collect $ do nsubtasks <- dPrim "nsubtasks" sOp $ Imp.GetNumTasks $ tvVar nsubtasks emit <=< compileSegRed' (Pat red_pes) segred_space [segred_op] nsubtasks $ \red_cont -> red_cont $ segBinOpChunks [segred_op] $ flip map hists $ \subhisto -> ( Var subhisto, map Imp.le64 $ map fst segment_dims ++ [subhistogram_id] ++ bucket_ids ) let ns_red = map (pe64 . snd) $ unSegSpace segred_space iterations = product $ init ns_red -- The segmented reduction is sequential over the inner most dimension scheduler_info = Imp.SchedulerInfo (untyped iterations) Imp.Static red_task = Imp.ParallelTask red_code free_params_red <- freeParams red_code emit $ Imp.Op $ Imp.SegOp "seghist_red" free_params_red red_task Nothing mempty scheduler_info where segment_dims = init $ unSegSpace space ifPrimType (Prim pt) f = f pt ifPrimType _ _ = pure () -- Note: This isn't currently used anywhere. -- This implementation for a Segmented Hist only -- parallelize over the segments, -- where each segment is updated sequentially. segmentedHist :: Pat LetDecMem -> SegSpace -> [HistOp MCMem] -> KernelBody MCMem -> MulticoreGen Imp.MCCode segmentedHist pat space histops kbody = do emit $ Imp.DebugPrint "Segmented segHist" Nothing collect $ do body <- compileSegHistBody pat space histops kbody free_params <- freeParams body emit $ Imp.Op $ Imp.ParLoop "segmented_hist" body free_params compileSegHistBody :: Pat LetDecMem -> SegSpace -> [HistOp MCMem] -> KernelBody MCMem -> MulticoreGen Imp.MCCode compileSegHistBody pat space histops kbody = collect $ do let (is, ns) = unzip $ unSegSpace space ns_64 = map pe64 ns let num_red_res = length histops + sum (map (length . histNeutral) histops) map_pes = drop num_red_res $ patElems pat per_red_pes = segHistOpChunks histops $ patElems pat dPrim_ (segFlat space) int64 sOp $ Imp.GetTaskId (segFlat space) generateChunkLoop "SegHist" Scalar $ \idx -> do let inner_bound = last ns_64 sFor "i" inner_bound $ \i -> do zipWithM_ dPrimV_ (init is) $ unflattenIndex (init ns_64) idx dPrimV_ (last is) i compileStms mempty (kernelBodyStms kbody) $ do let (red_res, map_res) = splitFromEnd (length map_pes) $ map kernelResultSubExp $ kernelBodyResult kbody forM_ (zip3 per_red_pes histops (splitHistResults histops red_res)) $ \(red_pes, HistOp dest_shape _ _ _ shape lam, (bucket, vs')) -> do let (is_params, vs_params) = splitAt (length vs') $ lambdaParams lam bucket' = map pe64 bucket dest_shape' = map pe64 $ shapeDims dest_shape bucket_in_bounds = inBounds (Slice (map DimFix bucket')) dest_shape' sComment "save map-out results" $ forM_ (zip map_pes map_res) $ \(pe, res) -> copyDWIMFix (patElemName pe) (map Imp.le64 is) res [] sComment "perform updates" $ sWhen bucket_in_bounds $ do dLParams $ lambdaParams lam sLoopNest shape $ \vec_is -> do -- Index forM_ (zip red_pes is_params) $ \(pe, p) -> copyDWIMFix (paramName p) [] (Var $ patElemName pe) (map Imp.le64 (init is) ++ bucket' ++ vec_is) -- Value at index forM_ (zip vs_params vs') $ \(p, v) -> copyDWIMFix (paramName p) [] v vec_is compileStms mempty (bodyStms $ lambdaBody lam) $ forM_ (zip red_pes $ map resSubExp $ bodyResult $ lambdaBody lam) $ \(pe, se) -> copyDWIMFix (patElemName pe) (map Imp.le64 (init is) ++ bucket' ++ vec_is) se []