!%G      !"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~Safe-HUVgasp9A class for categories. Instances should satisfy the laws f   = f -- (right identity)   f = f -- (left identity) f  (g  h) = (f  g)  h -- (associativity) 9 Safe,7=>?@A!gaspMultiplicative monoid%gaspModule.gaspAdditive monoid<   !#$"%&'*)(+,-.10/23456789:;<=>?@<;89:567234.10/<,-+'*)(%&!#$"= >   ?@777"7&7(6/6None%&',-.1456=>?@AHMSUVXgkgasp4Make a Euclidean vector out of a traversable functorgaspCross product +https://en.wikipedia.org/wiki/Cross_productgaspTensor productgasp3d rotation around given axis44      !"#$%&'()*+,-./012345667889::;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~#gasp-1.2.0.0-60xnh1c7HhuLy98Md0lIBWAlgebra.CategoryAlgebra.ClassesAlgebra.LinearCategoryCon.id$fCategoryTYPE->InitialAdditive:+Zero MyRationalRatio:%IntegralquotremquotRem toIntegerEuclideanDomain stdAssociatestdUnit normalizedivmoddivMod VectorSpaceField fromRationalDivisionrecip/Ring fromIntegerPreRingSemiRingMultiplicative*one^Module*^Group-negatemultAbelianAdditive DecidableZeroisZeroAdditive+zerotimes ExponentialfromExponentialProduct fromProductSumfromSumNaturaladdmultiplyfromIntegerDefaultgcd ifThenElse $fBinarySum$fAdditiveRatio $fAdditiveMap$fSemigroupSum $fMonoidSum$fDecidableZeroMap$fDecidableZeroFloat$fDecidableZeroDouble$fDecidableZeroInt$fDecidableZeroWord8$fDecidableZeroWord16$fDecidableZeroWord32$fDecidableZeroCInt$fDecidableZeroInteger$fAbelianAdditiveRatio$fAbelianAdditiveMap$fAbelianAdditiveFloat$fAbelianAdditiveDouble$fAbelianAdditiveInt$fAbelianAdditiveCInt$fAbelianAdditiveInteger $fGroupRatio $fGroupMap $fGroupFloat $fGroupDouble $fGroupWord8 $fGroupWord16 $fGroupWord32 $fGroupCInt $fGroupInt$fGroupInteger$fMultiplicativeRatio$fMultiplicativeFloat$fMultiplicativeDouble$fMultiplicativeInt$fMultiplicativeWord8$fMultiplicativeWord16$fMultiplicativeWord32$fMultiplicativeCInt$fMultiplicativeInteger$fAdditiveFloat$fAdditiveDouble $fAdditiveInt$fAdditiveCInt$fAdditiveWord8$fAdditiveWord16$fAdditiveWord32$fAdditiveInteger$fMultiplicativeExponential$fMonoidProduct$fSemigroupProduct$fModuleRatioRatio $fModulevMap$fModuleFloatFloat$fModuleDoubleDouble$fModuleCIntCInt$fModuleIntInt$fModuleIntegerInteger $fRingRatio $fRingFloat $fRingDouble $fRingInt $fRingCInt $fRingInteger$fDivisionRatio$fDivisionFloat$fDivisionDouble$fDivisionExponential$fModuleRatioDouble $fFieldRatio $fFieldFloat $fFieldDouble$fEuclideanDomainInt$fEuclideanDomainCInt$fEuclideanDomainInteger$fIntegralInteger$fAdditiveInitialAdditive $fGenericSum $fEqRatio$fShowInitialAdditiveOrthoMatMat2x2Mat3x3MatfromMatSqMatInnerProdSpaceScalardotProdV2V3Euclid fromEuclidV3'V2'V1'VNextVZeropureMat>*<>$<⊙·sqNormnorm×index matVecMul rotation2dcrossProductMatrix⊗ tensorWithidentitydiagonal rotation3drotationFromTo transposematMul'matMul$fApplicativeVZero$fApplicativeVNext$fModulesEuclid $fGroupEuclid$fAbelianAdditiveEuclid$fAdditiveEuclid$fInnerProdSpaceEuclid$fCategory->Mat $fModulesMat $fGroupMat$fAbelianAdditiveMat $fAdditiveMat$fDivisionOrthoMat$fMultiplicativeOrthoMat$fFunctorVZero$fFoldableVZero$fTraversableVZero $fShowVZero $fEqVZero $fOrdVZero$fFunctorVNext$fFoldableVNext$fTraversableVNext $fShowVNext $fEqVNext $fOrdVNext$fFunctorEuclid$fFoldableEuclid$fTraversableEuclid $fShowEuclid $fEqEuclid $fOrdEuclid$fApplicativeEuclid $fShowMat