-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/
-- | Familiar functions lifted to generic data types
--
-- Please see README.md.
@package generic-data-functions
@version 0.6.0
-- | Functions "lifted" (roughly) to generic Haskell data types.
--
-- Haskell data types have a fair amount of structure to them:
--
--
-- - Multiple constructors (sums)
-- - Multiple fields (products)
-- - Constructor names must be unique
-- - Fields are ordered left-to-right (or top-to-bottom)
--
--
-- We leverage this structure to provide parameterized generic functions,
-- where the user only handles the base case (individual fields). Such
-- generics are very relevant for simplistic usages like boring type
-- folds and serializing tasks. No need to bash out 50 lines of arcane
-- type algebra -- just write a single instance and you're golden.
--
-- Sum types introduce choice, which brings an extra layer of complexity.
-- For this reason, most functions provide a sum type version and a
-- non-sum type version. Sum type generic functions will require a bit
-- more information, like some extra definitions or instances. Using the
-- wrong one will result in a clear type error.
module Generic.Data.Function
-- | Runtime error messages for common generic data representation errors.
module Generic.Data.Function.Common.Error
wrapE :: String -> String -> String
eNoEmpty :: String
eNoSum :: String
-- | Handy generics utils.
module Generic.Data.Function.Common.Generic
-- | datatypeName without the value (only used as a proxy). Lets us
-- push our undefineds into one place.
datatypeName' :: forall d. Datatype d => String
-- | conName without the value (only used as a proxy). Lets us push
-- our undefineds into one place.
conName' :: forall c. Constructor c => String
-- | selName without the value (only used as a proxy). Lets us push
-- our undefineds into one place.
selName' :: forall s. Selector s => String
-- | Get the record name for a selector if present.
--
-- On the type level, a 'Maybe Symbol' is stored for record names. But
-- the reification is done using fromMaybe "". So we have to
-- inspect the resulting string to determine whether the field uses
-- record syntax or not. (Silly.)
selName'' :: forall s. Selector s => Maybe String
-- | absurd for the generic representation of the void type.
absurdV1 :: forall {k} x a. V1 (x :: k) -> a
module Generic.Data.Function.Common.Generic.Meta
-- | List every constructor name in a generic type rep.
type family CstrNames gf :: [Symbol]
-- | Append for type-level lists.
type family (as :: [k]) ++ (bs :: [k]) :: [k]
-- | Reify a list of type-level strings. Order is maintained.
class KnownSymbols as
symbolVals :: KnownSymbols as => [String]
instance (GHC.TypeLits.KnownSymbol a, Generic.Data.Function.Common.Generic.Meta.KnownSymbols as) => Generic.Data.Function.Common.Generic.Meta.KnownSymbols (a : as)
instance Generic.Data.Function.Common.Generic.Meta.KnownSymbols '[]
-- | Handy typelit utils.
module Generic.Data.Function.Common.TypeLits
natVal'' :: forall n. KnownNat n => Natural
natValInt :: forall n. KnownNat n => Int
symbolVal'' :: forall sym. KnownSymbol sym => String
module Generic.Data.MetaParse.Internal
-- | Type-level parser tag. Return the string unparsed.
data Raw
-- | Definitions for parsing data type constructor names on the type level.
--
-- Classically, when doing Generic programming in Haskell that
-- inspects data type metadata such as constructor and record names, we
-- reify these early and do any parsing etc. on the term level. Constant
-- folding should compute much of this at compile time, so performance
-- isn't really a worry. But if you're doing failable operations such as
-- parsing, you can't catch failures at compile time.
--
-- This module provides definitions for parsing constructor names on the
-- type level, and is used internally in sum type generics. But wait, how
-- do you write a type-level string parser? That's now feasible-- see the
-- Symparsec library :)
module Generic.Data.MetaParse.Cstr
-- | Types defining constructor name parsers.
--
-- When defining instances of these two classes, ensure that you place an
-- empty TH splice e.g. $(pure []) between the instances. This
-- is due to a GHC bug.
class CstrParser' tag => CstrParser tag where {
-- | Constructor name parser.
--
-- The Symparsec library generates type families that look like this. See
-- Generic.Data.Cstr.Parser.Symparsec for handy definitions.
type ParseCstr tag (str :: Symbol) :: Either ErrorMessage (CstrParseResult tag);
-- | Constraint enabling reification of the parsed type-level constructor
-- name.
--
-- For example, you might reify '(a, b) :: (Symbol, Symbol) with
-- (KnownSymbol a, KnownSymbol b).
type ReifyCstrParseResult tag (x :: CstrParseResult tag) :: Constraint;
}
-- | Types defining constructor name parsers (inner class).
--
-- We're forced to separate this associated type family from the other
-- class due to GHC complaining "type constructor cannot be used here (it
-- is defined and used in the same recursive group)".
--
-- When defining instances of these two classes, ensure that you place an
-- empty TH splice e.g. $(pure []) between the instances. This
-- is due to a GHC bug.
class CstrParser' tag where {
-- | Result kind of the constructor name parser.
type CstrParseResult tag :: k;
}
-- | Unwrap a generic constructor parse result. Emits a TypeError on
-- parse failure.
type family ForceGCParse dtName cstr a
-- | Type-level parser tag. Return the string unparsed.
data Raw
-- | Constructor name parse result demotion function using Proxy#.
type ParseCstrTo tag r = forall (x :: CstrParseResult tag). ReifyCstrParseResult tag x => Proxy# x -> r
instance Generic.Data.MetaParse.Cstr.CstrParser Generic.Data.MetaParse.Internal.Raw
instance Generic.Data.MetaParse.Cstr.CstrParser' Generic.Data.MetaParse.Internal.Raw
-- | Wrappers for "free" generics, where the base case is handled for you.
module Generic.Data.Wrappers
-- | Free generic wrapper where every field does "nothing" (e.g.
-- mempty.)
--
-- Maybe useful for testing?
data EmptyRec0 (a :: k)
-- | Free generic wrapper where any field emits a type error.
--
-- Useful for generic functions on void or enum types.
--
-- Note that the type you use here must still fulfill any requirements
-- e.g. for generic foldMap, it must be a Monoid, even
-- though the instance won't be used. We could perhaps falsify these
-- requirements with some dictionary cleverness, which would make using
-- this a little easier. But I think it would be in bad taste.
--
-- Consider it a further-limited EmptyRec0.
data NoRec0 (a :: k)
type ENoRec0 = 'Text "Cannot use generic function on NoRec0-wrapped type containing fields"
module Generic.Data.Function.Traverse.Constructor
-- | Implementation enumeration type class for generic traverse.
--
-- The type variable is uninstantiated, used purely as a tag. Good types
-- include the type class used inside (providing you define the type
-- class/it's not an orphan instance), or a custom void data type. See
-- the binrep library on Hackage for an example.
class GenericTraverse tag where {
-- | The target Applicative to traverse to.
type GenericTraverseF tag :: Type -> Type;
-- | The type class providing the action in traverse for permitted
-- types.
type GenericTraverseC tag a :: Constraint;
}
-- | The action in traverse (first argument).
--
-- We include data type metadata because this function is useful for
-- monadic parsers, which can record it in error messages. (We don't do
-- it for foldMap because it's pure.)
genericTraverseAction :: (GenericTraverse tag, GenericTraverseC tag a) => String -> String -> Maybe String -> Natural -> GenericTraverseF tag a
-- | Action to run when trying to parse a V1 (void data type).
--
-- Defaults to error, but you may wrap it in your functor if it
-- pleases.
genericTraverseV1 :: GenericTraverse tag => GenericTraverseF tag (V1 p)
type ENoEmpty tag = 'Text "Attempted to derive generic traverse for the void data type" :$$: 'Text "To override, implement genericTraverseV1 on:" :$$: 'Text "instance GenericTraverse (" :<>: 'ShowType tag :<>: 'Text ")"
class GTraverseC tag (cd :: Symbol) (cc :: Symbol) (si :: Natural) gf
gTraverseC :: GTraverseC tag cd cc si gf => GenericTraverseF tag (gf p)
type family ProdArity (f :: Type -> Type) :: Natural
class ReifyMaybeSymbol (mstr :: Maybe Symbol)
reifyMaybeSymbol :: ReifyMaybeSymbol mstr => Maybe String
instance forall k1 k2 (tag :: k1) a (si :: GHC.TypeNats.Nat) (mSelName :: GHC.Maybe.Maybe GHC.Types.Symbol) (cc :: GHC.Types.Symbol) (cd :: GHC.Types.Symbol) (_ms2 :: GHC.Generics.SourceUnpackedness) (_ms3 :: GHC.Generics.SourceStrictness) (_ms4 :: GHC.Generics.DecidedStrictness). (Generic.Data.Function.Traverse.Constructor.GenericTraverse tag, Generic.Data.Function.Traverse.Constructor.GenericTraverseC tag a, GHC.Base.Functor (Generic.Data.Function.Traverse.Constructor.GenericTraverseF tag), GHC.TypeNats.KnownNat si, Generic.Data.Function.Traverse.Constructor.ReifyMaybeSymbol mSelName, GHC.TypeLits.KnownSymbol cc, GHC.TypeLits.KnownSymbol cd) => Generic.Data.Function.Traverse.Constructor.GTraverseC tag cd cc si (GHC.Generics.S1 ('GHC.Generics.MetaSel mSelName _ms2 _ms3 _ms4) (GHC.Generics.Rec0 a))
instance Generic.Data.Function.Traverse.Constructor.ReifyMaybeSymbol 'GHC.Maybe.Nothing
instance GHC.TypeLits.KnownSymbol str => Generic.Data.Function.Traverse.Constructor.ReifyMaybeSymbol ('GHC.Maybe.Just str)
instance forall k (tag :: k) (cd :: GHC.Types.Symbol) (cc :: GHC.Types.Symbol) (si :: GHC.Num.Natural.Natural) (l :: GHC.Types.Type -> GHC.Types.Type) (r :: GHC.Types.Type -> GHC.Types.Type). (GHC.Base.Applicative (Generic.Data.Function.Traverse.Constructor.GenericTraverseF tag), Generic.Data.Function.Traverse.Constructor.GTraverseC tag cd cc si l, Generic.Data.Function.Traverse.Constructor.GTraverseC tag cd cc (si GHC.TypeNats.+ Generic.Data.Function.Traverse.Constructor.ProdArity r) r) => Generic.Data.Function.Traverse.Constructor.GTraverseC tag cd cc si (l GHC.Generics.:*: r)
instance forall k1 k2 (tag :: k1) (cd :: GHC.Types.Symbol) (cc :: GHC.Types.Symbol). GHC.Base.Applicative (Generic.Data.Function.Traverse.Constructor.GenericTraverseF tag) => Generic.Data.Function.Traverse.Constructor.GTraverseC tag cd cc 0 GHC.Generics.U1
instance Generic.Data.Function.Traverse.Constructor.GenericTraverse (Generic.Data.Wrappers.NoRec0 f)
instance Generic.Data.Function.Traverse.Constructor.GenericTraverse (Generic.Data.Wrappers.EmptyRec0 f)
-- | traverse over generic sum types.
--
-- Disambiguates constructors by prepending sum tags.
--
-- Note that the sum tag approach has efficiency limitations. You may
-- design a constructor disambiguation schema which permits
-- "incrementally" parsing, rather than parsing some whole thing then
-- comparing to each option, which will be faster. If you wish to perform
-- such sum tag handling yourself, but still want the free generics,
-- Generic.Data.FOnCstr can do this for you.
module Generic.Data.Function.Traverse.Sum
class GTraverseSum tag sumtag gf
gTraverseSum :: GTraverseSum tag sumtag gf => ParseCstrTo sumtag pt -> (String -> GenericTraverseF tag pt) -> (forall a. String -> GenericTraverseF tag a) -> (pt -> pt -> Bool) -> GenericTraverseF tag (gf p)
class GTraverseCSum tag sumtag (dtName :: Symbol) gf
gTraverseCSum :: GTraverseCSum tag sumtag dtName gf => ParseCstrTo sumtag pt -> (pt -> pt -> Bool) -> pt -> GenericTraverseF tag (gf p)
instance forall k1 k2 k3 (f :: GHC.Types.Type -> GHC.Types.Type) (tag :: k1) (dtName :: GHC.Types.Symbol) (sumtag :: k2) (gf :: k3 -> GHC.Types.Type) (_md2 :: GHC.Types.Symbol) (_md3 :: GHC.Types.Symbol) (_md4 :: GHC.Types.Bool). (f GHC.Types.~ Generic.Data.Function.Traverse.Constructor.GenericTraverseF tag, GHC.Base.Alternative f, GHC.Base.Monad f, GHC.TypeLits.KnownSymbol dtName, Generic.Data.Function.Traverse.Sum.GTraverseCSum tag sumtag dtName gf) => Generic.Data.Function.Traverse.Sum.GTraverseSum tag sumtag (GHC.Generics.D1 ('GHC.Generics.MetaData dtName _md2 _md3 _md4) gf)
instance forall k1 k2 k3 (tag :: k1) (sumtag :: k2) (dtName :: GHC.Types.Symbol) (l :: k3 -> GHC.Types.Type) (r :: k3 -> GHC.Types.Type). (GHC.Base.Alternative (Generic.Data.Function.Traverse.Constructor.GenericTraverseF tag), Generic.Data.Function.Traverse.Sum.GTraverseCSum tag sumtag dtName l, Generic.Data.Function.Traverse.Sum.GTraverseCSum tag sumtag dtName r) => Generic.Data.Function.Traverse.Sum.GTraverseCSum tag sumtag dtName (l GHC.Generics.:+: r)
instance forall k1 k2 k3 (tag :: k1) (dtName :: GHC.Types.Symbol) (cstrName :: GHC.Types.Symbol) (gf :: k2 -> GHC.Types.Type) (sumtag :: k3) (cstrParsed :: Generic.Data.MetaParse.Cstr.CstrParseResult sumtag) (cstr :: GHC.Types.Symbol) (_mc2 :: GHC.Generics.FixityI) (_mc3 :: GHC.Types.Bool). (GHC.Base.Alternative (Generic.Data.Function.Traverse.Constructor.GenericTraverseF tag), Generic.Data.Function.Traverse.Constructor.GTraverseC tag dtName cstrName 0 gf, Generic.Data.MetaParse.Cstr.ReifyCstrParseResult sumtag cstrParsed, Generic.Data.MetaParse.Cstr.ForceGCParse dtName cstr (Generic.Data.MetaParse.Cstr.ParseCstr sumtag cstrName) GHC.Types.~ cstrParsed) => Generic.Data.Function.Traverse.Sum.GTraverseCSum tag sumtag dtName (GHC.Generics.C1 ('GHC.Generics.MetaCons cstrName _mc2 _mc3) gf)
instance forall k1 k2 k3 (tag :: k1) (sumtag :: k2). Generic.Data.Function.Traverse.Constructor.GenericTraverse tag => Generic.Data.Function.Traverse.Sum.GTraverseSum tag sumtag GHC.Generics.V1
module Generic.Data.Function.Traverse.NonSum
class GTraverseNonSum tag gf
gTraverseNonSum :: GTraverseNonSum tag gf => GenericTraverseF tag (gf p)
class GTraverseNonSumD tag (cd :: Symbol) gf
gTraverseNonSumD :: GTraverseNonSumD tag cd gf => GenericTraverseF tag (gf p)
instance forall k1 k2 (tag :: k1) (dtName :: GHC.Types.Symbol) (gf :: k2 -> GHC.Types.Type) (_md2 :: GHC.Types.Symbol) (_md3 :: GHC.Types.Symbol) (_md4 :: GHC.Types.Bool). (GHC.Base.Functor (Generic.Data.Function.Traverse.Constructor.GenericTraverseF tag), Generic.Data.Function.Traverse.NonSum.GTraverseNonSumD tag dtName gf) => Generic.Data.Function.Traverse.NonSum.GTraverseNonSum tag (GHC.Generics.D1 ('GHC.Generics.MetaData dtName _md2 _md3 _md4) gf)
instance forall k1 k2 (tag :: k1) (cd :: GHC.Types.Symbol) (cstrName :: GHC.Types.Symbol) (gf :: k2 -> GHC.Types.Type) (_mc2 :: GHC.Generics.FixityI) (_mc3 :: GHC.Types.Bool). (GHC.Base.Functor (Generic.Data.Function.Traverse.Constructor.GenericTraverseF tag), Generic.Data.Function.Traverse.Constructor.GTraverseC tag cd cstrName 0 gf) => Generic.Data.Function.Traverse.NonSum.GTraverseNonSumD tag cd (GHC.Generics.C1 ('GHC.Generics.MetaCons cstrName _mc2 _mc3) gf)
instance forall k1 k2 (tag :: k1) (cd :: GHC.Types.Symbol) (l :: k2 -> GHC.Types.Type) (r :: k2 -> GHC.Types.Type). Generic.Data.Function.Traverse.NonSum.GTraverseNonSumD tag cd (l GHC.Generics.:+: r)
instance forall k1 k2 (tag :: k1) (cd :: GHC.Types.Symbol). Generic.Data.Function.Traverse.Constructor.GenericTraverse tag => Generic.Data.Function.Traverse.NonSum.GTraverseNonSumD tag cd GHC.Generics.V1
-- | traverse for generic data types.
--
-- TODO This is harder to conceptualize than generic foldMap. No
-- nice clean explanation yet.
--
-- This function can provide generic support for simple parser-esque
-- types.
module Generic.Data.Function.Traverse
-- | Implementation enumeration type class for generic traverse.
--
-- The type variable is uninstantiated, used purely as a tag. Good types
-- include the type class used inside (providing you define the type
-- class/it's not an orphan instance), or a custom void data type. See
-- the binrep library on Hackage for an example.
class GenericTraverse tag where {
-- | The target Applicative to traverse to.
type GenericTraverseF tag :: Type -> Type;
-- | The type class providing the action in traverse for permitted
-- types.
type GenericTraverseC tag a :: Constraint;
}
-- | The action in traverse (first argument).
--
-- We include data type metadata because this function is useful for
-- monadic parsers, which can record it in error messages. (We don't do
-- it for foldMap because it's pure.)
genericTraverseAction :: (GenericTraverse tag, GenericTraverseC tag a) => String -> String -> Maybe String -> Natural -> GenericTraverseF tag a
-- | Action to run when trying to parse a V1 (void data type).
--
-- Defaults to error, but you may wrap it in your functor if it
-- pleases.
genericTraverseV1 :: GenericTraverse tag => GenericTraverseF tag (V1 p)
-- | Generic traverse over a term of non-sum data type f a,
-- where f is set by the tag you pass.
genericTraverseNonSum :: forall {k} (tag :: k) a. (Generic a, Functor (GenericTraverseF tag), GTraverseNonSum tag (Rep a)) => GenericTraverseF tag a
class GTraverseNonSum tag gf
genericTraverseSum :: forall tag sumtag a pt. (Generic a, Functor (GenericTraverseF tag), GTraverseSum tag sumtag (Rep a)) => ParseCstrTo sumtag pt -> (String -> GenericTraverseF tag pt) -> (forall x. String -> GenericTraverseF tag x) -> (pt -> pt -> Bool) -> GenericTraverseF tag a
class GTraverseSum tag sumtag gf
genericTraverseSumRaw :: forall tag a pt. (Generic a, Functor (GenericTraverseF tag), GTraverseSum tag Raw (Rep a)) => (String -> pt) -> (String -> GenericTraverseF tag pt) -> (forall x. String -> GenericTraverseF tag x) -> (pt -> pt -> Bool) -> GenericTraverseF tag a
module Generic.Data.Function.FoldMap.Constructor
-- | Implementation enumeration type class for generic foldMap.
--
-- The type variable is uninstantiated, used purely as a tag. Good types
-- include the type class used inside (providing you define the type
-- class/it's not an orphan instance), or a custom void data type. See
-- the binrep library on Hackage for an example.
class GenericFoldMap tag where {
-- | The target Monoid to foldMap to.
type GenericFoldMapM tag :: Type;
-- | The type class providing the map function in foldMap for
-- permitted types.
type GenericFoldMapC tag a :: Constraint;
}
-- | The map function in foldMap (first argument).
genericFoldMapF :: (GenericFoldMap tag, GenericFoldMapC tag a) => a -> GenericFoldMapM tag
-- | foldMap on individual constructors (products).
class GFoldMapC tag f
gFoldMapC :: GFoldMapC tag f => f p -> GenericFoldMapM tag
instance forall k1 k2 (tag :: k1) (l :: k2 -> GHC.Types.Type) (r :: k2 -> GHC.Types.Type). (GHC.Base.Semigroup (Generic.Data.Function.FoldMap.Constructor.GenericFoldMapM tag), Generic.Data.Function.FoldMap.Constructor.GFoldMapC tag l, Generic.Data.Function.FoldMap.Constructor.GFoldMapC tag r) => Generic.Data.Function.FoldMap.Constructor.GFoldMapC tag (l GHC.Generics.:*: r)
instance forall k1 k2 (tag :: k1) a (c :: GHC.Generics.Meta). (Generic.Data.Function.FoldMap.Constructor.GenericFoldMap tag, Generic.Data.Function.FoldMap.Constructor.GenericFoldMapC tag a) => Generic.Data.Function.FoldMap.Constructor.GFoldMapC tag (GHC.Generics.S1 c (GHC.Generics.Rec0 a))
instance forall k1 k2 (tag :: k1). GHC.Base.Monoid (Generic.Data.Function.FoldMap.Constructor.GenericFoldMapM tag) => Generic.Data.Function.FoldMap.Constructor.GFoldMapC tag GHC.Generics.U1
instance Generic.Data.Function.FoldMap.Constructor.GenericFoldMap (Generic.Data.Wrappers.NoRec0 m)
instance GHC.Base.Monoid m => Generic.Data.Function.FoldMap.Constructor.GenericFoldMap (Generic.Data.Wrappers.EmptyRec0 m)
-- | foldMap for sum types, where constructors are encoded by index
-- (distance from first/leftmost constructor) in a single byte, which is
-- prepended to their contents.
--
-- TODO. Clumsy and limited. And yet, still handy enough I think.
module Generic.Data.Function.FoldMap.SumConsByte
class GFoldMapSumConsByte tag f
gFoldMapSumConsByte :: GFoldMapSumConsByte tag f => (Word8 -> GenericFoldMapM tag) -> f p -> GenericFoldMapM tag
-- | Sum type handler handling constructors only. Useful if you handle
-- constructor prefixes elsewhere.
class GFoldMapCSumCtr tag f
gFoldMapCSumCtr :: GFoldMapCSumCtr tag f => f p -> GenericFoldMapM tag
class GFoldMapCSumCtrArityByte tag (arity :: Natural) f
gFoldMapCSumCtrArityByte :: GFoldMapCSumCtrArityByte tag arity f => (Word8 -> GenericFoldMapM tag) -> f p -> GenericFoldMapM tag
type family SumArity (a :: Type -> Type) :: Natural
type FitsInByte n = FitsInByteResult (n <=? 255)
type family FitsInByteResult (b :: Bool) :: Constraint
type family TypeErrorMessage (a :: Symbol) :: Constraint
instance forall k (l :: GHC.Types.Type -> GHC.Types.Type) (r :: GHC.Types.Type -> GHC.Types.Type) (tag :: k). (Generic.Data.Function.FoldMap.SumConsByte.FitsInByte (Generic.Data.Function.FoldMap.SumConsByte.SumArity (l GHC.Generics.:+: r)), Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtrArityByte tag 0 (l GHC.Generics.:+: r), Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtr tag (l GHC.Generics.:+: r), GHC.Base.Semigroup (Generic.Data.Function.FoldMap.Constructor.GenericFoldMapM tag)) => Generic.Data.Function.FoldMap.SumConsByte.GFoldMapSumConsByte tag (l GHC.Generics.:+: r)
instance forall k (tag :: k) (arity :: GHC.Num.Natural.Natural) (l :: GHC.Types.Type -> GHC.Types.Type) (r :: GHC.Types.Type -> GHC.Types.Type). (Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtrArityByte tag arity l, Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtrArityByte tag (arity GHC.TypeNats.+ Generic.Data.Function.FoldMap.SumConsByte.SumArity l) r) => Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtrArityByte tag arity (l GHC.Generics.:+: r)
instance forall k1 k2 (arity :: GHC.TypeNats.Nat) (tag :: k1) (c :: GHC.Generics.Meta) (f :: k2 -> GHC.Types.Type). GHC.TypeNats.KnownNat arity => Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtrArityByte tag arity (GHC.Generics.C1 c f)
instance forall k1 k2 (tag :: k1) (l :: k2 -> GHC.Types.Type) (r :: k2 -> GHC.Types.Type). (Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtr tag l, Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtr tag r) => Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtr tag (l GHC.Generics.:+: r)
instance forall k1 k2 (tag :: k1) (f :: k2 -> GHC.Types.Type) (c :: GHC.Generics.Meta). Generic.Data.Function.FoldMap.Constructor.GFoldMapC tag f => Generic.Data.Function.FoldMap.SumConsByte.GFoldMapCSumCtr tag (GHC.Generics.C1 c f)
instance forall k1 k2 (tag :: k1) (f :: k2 -> GHC.Types.Type) (c :: GHC.Generics.Meta). Generic.Data.Function.FoldMap.SumConsByte.GFoldMapSumConsByte tag f => Generic.Data.Function.FoldMap.SumConsByte.GFoldMapSumConsByte tag (GHC.Generics.D1 c f)
instance forall k1 k2 (m :: k1) (c :: GHC.Generics.Meta) (f :: k2 -> GHC.Types.Type). Generic.Data.Function.FoldMap.SumConsByte.GFoldMapSumConsByte m (GHC.Generics.C1 c f)
instance forall k1 k2 (m :: k1). Generic.Data.Function.FoldMap.SumConsByte.GFoldMapSumConsByte m GHC.Generics.V1
module Generic.Data.Function.FoldMap.Sum
class GFoldMapSum tag sumtag gf
gFoldMapSum :: GFoldMapSum tag sumtag gf => ParseCstrTo sumtag (GenericFoldMapM tag) -> gf p -> GenericFoldMapM tag
class GFoldMapSumD tag sumtag dtName gf
gFoldMapSumD :: GFoldMapSumD tag sumtag dtName gf => ParseCstrTo sumtag (GenericFoldMapM tag) -> gf p -> GenericFoldMapM tag
class GFoldMapCSum tag sumtag (dtName :: Symbol) gf
gFoldMapCSum :: GFoldMapCSum tag sumtag dtName gf => ParseCstrTo sumtag (GenericFoldMapM tag) -> gf p -> GenericFoldMapM tag
instance forall k1 k2 k3 (tag :: k1) (sumtag :: k2) (dtName :: GHC.Types.Symbol) (c :: GHC.Generics.Meta) (gf :: k3 -> GHC.Types.Type). Generic.Data.Function.FoldMap.Sum.GFoldMapCSum tag sumtag dtName (GHC.Generics.C1 c gf) => Generic.Data.Function.FoldMap.Sum.GFoldMapSumD tag sumtag dtName (GHC.Generics.C1 c gf)
instance forall k1 k2 k3 (tag :: k1) (sumtag :: k2) (dtName :: GHC.Types.Symbol) (l :: k3 -> GHC.Types.Type) (r :: k3 -> GHC.Types.Type). Generic.Data.Function.FoldMap.Sum.GFoldMapCSum tag sumtag dtName (l GHC.Generics.:+: r) => Generic.Data.Function.FoldMap.Sum.GFoldMapSumD tag sumtag dtName (l GHC.Generics.:+: r)
instance forall k1 k2 k3 (tag :: k1) (sumtag :: k2) (dtName :: GHC.Types.Symbol) (l :: k3 -> GHC.Types.Type) (r :: k3 -> GHC.Types.Type). (Generic.Data.Function.FoldMap.Sum.GFoldMapCSum tag sumtag dtName l, Generic.Data.Function.FoldMap.Sum.GFoldMapCSum tag sumtag dtName r) => Generic.Data.Function.FoldMap.Sum.GFoldMapCSum tag sumtag dtName (l GHC.Generics.:+: r)
instance forall k1 k2 k3 (tag :: k1) (gf :: k2 -> GHC.Types.Type) (sumtag :: k3) (cstrParsed :: Generic.Data.MetaParse.Cstr.CstrParseResult sumtag) (dtName :: GHC.Types.Symbol) (cstr :: GHC.Types.Symbol) (_mc2 :: GHC.Generics.FixityI) (_mc3 :: GHC.Types.Bool). (GHC.Base.Semigroup (Generic.Data.Function.FoldMap.Constructor.GenericFoldMapM tag), Generic.Data.Function.FoldMap.Constructor.GFoldMapC tag gf, Generic.Data.MetaParse.Cstr.ReifyCstrParseResult sumtag cstrParsed, Generic.Data.MetaParse.Cstr.ForceGCParse dtName cstr (Generic.Data.MetaParse.Cstr.ParseCstr sumtag cstr) GHC.Types.~ cstrParsed) => Generic.Data.Function.FoldMap.Sum.GFoldMapCSum tag sumtag dtName (GHC.Generics.C1 ('GHC.Generics.MetaCons cstr _mc2 _mc3) gf)
instance forall k1 k2 k3 (tag :: k1) (sumtag :: k2) (dtName :: GHC.Types.Symbol) (gf :: k3 -> GHC.Types.Type) (_md2 :: GHC.Types.Symbol) (_md3 :: GHC.Types.Symbol) (_md4 :: GHC.Types.Bool). Generic.Data.Function.FoldMap.Sum.GFoldMapSumD tag sumtag dtName gf => Generic.Data.Function.FoldMap.Sum.GFoldMapSum tag sumtag (GHC.Generics.D1 ('GHC.Generics.MetaData dtName _md2 _md3 _md4) gf)
instance forall k1 k2 k3 k4 (tag :: k1) (sumtag :: k2) (dtName :: k3). Generic.Data.Function.FoldMap.Sum.GFoldMapSumD tag sumtag dtName GHC.Generics.V1
module Generic.Data.Function.FoldMap.NonSum
-- | foldMap over generic product data types.
--
-- Take a generic representation, map each field in the data type to a
-- Monoid, and combine the results with (<>).
class GFoldMapNonSum tag gf
gFoldMapNonSum :: GFoldMapNonSum tag gf => gf p -> GenericFoldMapM tag
instance forall k1 k2 (tag :: k1) (gf :: k2 -> GHC.Types.Type) (c :: GHC.Generics.Meta). Generic.Data.Function.FoldMap.NonSum.GFoldMapNonSum tag gf => Generic.Data.Function.FoldMap.NonSum.GFoldMapNonSum tag (GHC.Generics.D1 c gf)
instance forall k1 k2 (tag :: k1) (gf :: k2 -> GHC.Types.Type) (c :: GHC.Generics.Meta). Generic.Data.Function.FoldMap.Constructor.GFoldMapC tag gf => Generic.Data.Function.FoldMap.NonSum.GFoldMapNonSum tag (GHC.Generics.C1 c gf)
instance forall k1 k2 (tag :: k1) (l :: k2 -> GHC.Types.Type) (r :: k2 -> GHC.Types.Type). Generic.Data.Function.FoldMap.NonSum.GFoldMapNonSum tag (l GHC.Generics.:+: r)
instance forall k1 k2 (tag :: k1). Generic.Data.Function.FoldMap.NonSum.GFoldMapNonSum tag GHC.Generics.V1
-- | foldMap for generic data types.
--
-- foldMap can be considered a two-step process:
--
--
-- - map every element a of a t a (where
-- Foldable t) to some Monoid m
-- - combine elements using (<>)
--
--
-- Applying this to generic data types:
--
--
-- - map every field of a constructor to some Monoid
-- m
-- - combine elements using (<>)
--
--
-- Field mappings are handled using a per-monoid type class. You need a
-- monoid m with an associated type class which has a function
-- a -> m. Write a GenericFoldMap instance for your
-- monoid which points to your type class. If a field type doesn't have a
-- matching instance, the generic instance emits a type error.
--
-- Sum types (with multiple constructors) are handled by
-- (<>)-ing the constructor with its contents (in that
-- order). You must provide a String -> m function for
-- mapping constructor names. If you need custom sum type handling, you
-- may write your own and still leverage the individual constructor
-- generics.
--
-- This function can provide generic support for simple fold-y operations
-- like serialization.
module Generic.Data.Function.FoldMap
-- | Implementation enumeration type class for generic foldMap.
--
-- The type variable is uninstantiated, used purely as a tag. Good types
-- include the type class used inside (providing you define the type
-- class/it's not an orphan instance), or a custom void data type. See
-- the binrep library on Hackage for an example.
class GenericFoldMap tag where {
-- | The target Monoid to foldMap to.
type GenericFoldMapM tag :: Type;
-- | The type class providing the map function in foldMap for
-- permitted types.
type GenericFoldMapC tag a :: Constraint;
}
-- | The map function in foldMap (first argument).
genericFoldMapF :: (GenericFoldMap tag, GenericFoldMapC tag a) => a -> GenericFoldMapM tag
-- | Generic foldMap over a term of non-sum data type a.
--
-- a must have exactly one constructor.
genericFoldMapNonSum :: forall tag a. (Generic a, GFoldMapNonSum tag (Rep a)) => a -> GenericFoldMapM tag
-- | foldMap over generic product data types.
--
-- Take a generic representation, map each field in the data type to a
-- Monoid, and combine the results with (<>).
class GFoldMapNonSum tag gf
-- | Generic foldMap over a term of sum data type a.
--
-- You must provide a type tag for parsing constructor names on the
-- type-level, and a function for reifying such results to monoidal
-- values.
genericFoldMapSum :: forall tag sumtag a. (Generic a, GFoldMapSum tag sumtag (Rep a)) => ParseCstrTo sumtag (GenericFoldMapM tag) -> a -> GenericFoldMapM tag
class GFoldMapSum tag sumtag gf
-- | Generic foldMap over a term of sum data type a.
--
-- You must provide a function for mapping constructor names to monoidal
-- values.
genericFoldMapSumRaw :: forall tag a. (Generic a, GFoldMapSum tag Raw (Rep a)) => (String -> GenericFoldMapM tag) -> a -> GenericFoldMapM tag
-- | Generic foldMap over a term of sum data type a where
-- constructors are mapped to their index (distance from first/leftmost
-- constructor)
--
-- a must have at least two constructors.
--
-- You must provide a function for mapping bytes to monoidal values.
--
-- This should be fairly fast, but sadly I think it's slower than the
-- generics in store and binary/cereal libraries.
genericFoldMapSumConsByte :: forall tag a. (Generic a, GFoldMapSumConsByte tag (Rep a)) => (Word8 -> GenericFoldMapM tag) -> a -> GenericFoldMapM tag
class GFoldMapSumConsByte tag f
module Generic.Data.Function.Example
data X
X1 :: X
X2 :: X
data Y
Y :: Y
newtype Showly
Showly :: [String] -> Showly
[unShowly] :: Showly -> [String]
showGeneric :: forall a. (Generic a, GFoldMapSum Showly Raw (Rep a)) => a -> String
showGeneric' :: forall a. (Generic a, GFoldMapNonSum Showly (Rep a)) => a -> String
instance GHC.Generics.Generic Generic.Data.Function.Example.X
instance GHC.Generics.Generic Generic.Data.Function.Example.Y
instance GHC.Base.Monoid Generic.Data.Function.Example.Showly
instance GHC.Base.Semigroup Generic.Data.Function.Example.Showly
instance Generic.Data.Function.FoldMap.Constructor.GenericFoldMap Generic.Data.Function.Example.Showly
module Generic.Data.Function.Contra.Constructor
-- | TODO
--
-- The type variable is uninstantiated, used purely as a tag. Good types
-- include the type class used inside (providing you define the type
-- class/it's not an orphan instance), or a custom void data type. See
-- the binrep library on Hackage for an example.
class GenericContra tag where {
type GenericContraF tag :: Type -> Type;
type GenericContraC tag a :: Constraint;
}
genericContraF :: (GenericContra tag, GenericContraC tag a) => GenericContraF tag a
class GContraC tag gf
gContraC :: GContraC tag gf => GenericContraF tag (gf p)
instance forall k1 k2 (tag :: k1) (l :: k2 -> GHC.Types.Type) (r :: k2 -> GHC.Types.Type). (Data.Functor.Contravariant.Divisible.Divisible (Generic.Data.Function.Contra.Constructor.GenericContraF tag), Generic.Data.Function.Contra.Constructor.GContraC tag l, Generic.Data.Function.Contra.Constructor.GContraC tag r) => Generic.Data.Function.Contra.Constructor.GContraC tag (l GHC.Generics.:*: r)
instance forall k1 k2 (tag :: k1) a (c :: GHC.Generics.Meta). (Data.Functor.Contravariant.Contravariant (Generic.Data.Function.Contra.Constructor.GenericContraF tag), Generic.Data.Function.Contra.Constructor.GenericContra tag, Generic.Data.Function.Contra.Constructor.GenericContraC tag a) => Generic.Data.Function.Contra.Constructor.GContraC tag (GHC.Generics.S1 c (GHC.Generics.Rec0 a))
instance forall k1 k2 (tag :: k1). Data.Functor.Contravariant.Divisible.Divisible (Generic.Data.Function.Contra.Constructor.GenericContraF tag) => Generic.Data.Function.Contra.Constructor.GContraC tag GHC.Generics.U1
instance Generic.Data.Function.Contra.Constructor.GenericContra (Generic.Data.Wrappers.NoRec0 f)
instance Generic.Data.Function.Contra.Constructor.GenericContra (Generic.Data.Wrappers.EmptyRec0 f)
module Generic.Data.Function.Contra.Sum
class GContraSum tag gf
gContraSum :: GContraSum tag gf => GenericContraF tag String -> GenericContraF tag (gf p)
class GContraSumD tag gf
gContraSumD :: GContraSumD tag gf => GenericContraF tag String -> GenericContraF tag (gf p)
class GContraCSum tag gf
gContraCSum :: GContraCSum tag gf => GenericContraF tag String -> GenericContraF tag (gf p)
instance forall k1 k2 (tag :: k1) (l :: k2 -> GHC.Types.Type) (r :: k2 -> GHC.Types.Type). Generic.Data.Function.Contra.Sum.GContraCSum tag (l GHC.Generics.:+: r) => Generic.Data.Function.Contra.Sum.GContraSumD tag (l GHC.Generics.:+: r)
instance forall k1 k2 (tag :: k1) (cc :: GHC.Generics.Meta) (gf :: k2 -> GHC.Types.Type). Generic.Data.Function.Contra.Sum.GContraCSum tag (GHC.Generics.C1 cc gf) => Generic.Data.Function.Contra.Sum.GContraSumD tag (GHC.Generics.C1 cc gf)
instance forall k1 k2 (tag :: k1) (l :: k2 -> GHC.Types.Type) (r :: k2 -> GHC.Types.Type). (Data.Functor.Contravariant.Divisible.Decidable (Generic.Data.Function.Contra.Constructor.GenericContraF tag), Generic.Data.Function.Contra.Sum.GContraCSum tag l, Generic.Data.Function.Contra.Sum.GContraCSum tag r) => Generic.Data.Function.Contra.Sum.GContraCSum tag (l GHC.Generics.:+: r)
instance forall k1 k2 (tag :: k1) (gf :: k2 -> GHC.Types.Type) (c :: GHC.Generics.Meta). (Data.Functor.Contravariant.Divisible.Divisible (Generic.Data.Function.Contra.Constructor.GenericContraF tag), Generic.Data.Function.Contra.Constructor.GContraC tag gf, GHC.Generics.Constructor c) => Generic.Data.Function.Contra.Sum.GContraCSum tag (GHC.Generics.C1 c gf)
instance forall k1 k2 (tag :: k1) (gf :: k2 -> GHC.Types.Type) (cd :: GHC.Generics.Meta). (Generic.Data.Function.Contra.Sum.GContraSumD tag gf, Data.Functor.Contravariant.Contravariant (Generic.Data.Function.Contra.Constructor.GenericContraF tag)) => Generic.Data.Function.Contra.Sum.GContraSum tag (GHC.Generics.D1 cd gf)
instance forall k1 k2 (tag :: k1). Data.Functor.Contravariant.Divisible.Divisible (Generic.Data.Function.Contra.Constructor.GenericContraF tag) => Generic.Data.Function.Contra.Sum.GContraSumD tag GHC.Generics.V1
module Generic.Data.Function.Contra.NonSum
class GContraNonSum tag gf
gContraNonSum :: GContraNonSum tag gf => GenericContraF tag (gf p)
class GContraNonSumD tag gf
gContraNonSumD :: GContraNonSumD tag gf => GenericContraF tag (gf p)
instance forall k1 k2 (tag :: k1) (gf :: k2 -> GHC.Types.Type) (c :: GHC.Generics.Meta). (Data.Functor.Contravariant.Contravariant (Generic.Data.Function.Contra.Constructor.GenericContraF tag), Generic.Data.Function.Contra.NonSum.GContraNonSumD tag gf) => Generic.Data.Function.Contra.NonSum.GContraNonSum tag (GHC.Generics.C1 c gf)
instance forall k1 k2 (tag :: k1) (gf :: k2 -> GHC.Types.Type) (c :: GHC.Generics.Meta). (Data.Functor.Contravariant.Contravariant (Generic.Data.Function.Contra.Constructor.GenericContraF tag), Generic.Data.Function.Contra.Constructor.GContraC tag gf) => Generic.Data.Function.Contra.NonSum.GContraNonSumD tag (GHC.Generics.C1 c gf)
instance forall k1 k2 (tag :: k1) (l :: k2 -> GHC.Types.Type) (r :: k2 -> GHC.Types.Type). Generic.Data.Function.Contra.NonSum.GContraNonSumD tag (l GHC.Generics.:+: r)
instance forall k1 k2 (tag :: k1). Data.Functor.Contravariant.Divisible.Divisible (Generic.Data.Function.Contra.Constructor.GenericContraF tag) => Generic.Data.Function.Contra.NonSum.GContraNonSumD tag GHC.Generics.V1
module Generic.Data.Function.Contra
-- | TODO
--
-- The type variable is uninstantiated, used purely as a tag. Good types
-- include the type class used inside (providing you define the type
-- class/it's not an orphan instance), or a custom void data type. See
-- the binrep library on Hackage for an example.
class GenericContra tag where {
type GenericContraF tag :: Type -> Type;
type GenericContraC tag a :: Constraint;
}
genericContraF :: (GenericContra tag, GenericContraC tag a) => GenericContraF tag a
-- | Generic contra over a term of non-sum data type a.
--
-- a must have exactly one constructor.
genericContraNonSum :: forall {k} (tag :: k) a. (Generic a, Contravariant (GenericContraF tag), GContraNonSum tag (Rep a)) => GenericContraF tag a
class GContraNonSum tag gf
-- | Generic contra over a term of sum data type a.
--
-- You must provide a contra function for constructor names.
--
-- This is the most generic option, but depending on your string
-- manipulation may be slower.
genericContraSum :: forall {k} (tag :: k) a. (Generic a, Contravariant (GenericContraF tag), GContraSum tag (Rep a)) => GenericContraF tag String -> GenericContraF tag a
class GContraSum tag gf
module Generic.Type.CstrPath
-- | Get the path to a named constructor in a generic type representation.
--
-- The D1 meta must already be stripped.
type family GCstrPath name gf
-- | Which direction to take at a :+: constructor choice.
data GCstrChoice
-- | left (the L1 constructor)
GoL1 :: GCstrChoice
-- | right (the R1 constructor)
GoR1 :: GCstrChoice
module Generic.Data.FOnCstr
-- | What generic functor to run on the requested constructor.
class GenericFOnCstr tag where {
-- | Functor.
type GenericFOnCstrF tag :: Type -> Type;
-- | Constraint. Includes relevant generic meta (data type &
-- constructor name).
type GenericFOnCstrC tag (dtName :: Symbol) (cstrName :: Symbol) (gf :: k -> Type) :: Constraint;
}
-- | Generic functor.
--
-- We have to pass a proxy thanks to type applications not working
-- properly with instances. (This will be easier in GHC 9.10 via
-- RequiredTypeArguments).
genericFOnCstrF :: (GenericFOnCstr tag, GenericFOnCstrC tag dtName cstrName gf) => Proxy# '(dtName, cstrName) -> GenericFOnCstrF tag (gf p)
-- | Run a generic functor (provided via tag) on the constructor
-- name name.
--
-- We hope and pray that GHC removes the generic wrappers, at least the
-- constructor ones, since we do a whole bunch of nothing with them on
-- the term level. Checking this (the produced Core) is a big TODO.
class GFOnCstr tag (name :: Symbol) gf
gFOnCstr :: GFOnCstr tag name gf => GenericFOnCstrF tag (gf p)
type family AssertValidCstrPath dtName cstr eae
class GFOnCstr' tag (dtName :: Symbol) (cstrName :: Symbol) (turns :: [GCstrChoice]) gf
gFOnCstr' :: GFOnCstr' tag dtName cstrName turns gf => GenericFOnCstrF tag (gf p)
-- | Run a generic functor on the requested constructor of the given type.
genericFOnCstr :: forall tag (name :: Symbol) a. (Generic a, Functor (GenericFOnCstrF tag), GFOnCstr tag name (Rep a)) => GenericFOnCstrF tag a
instance forall k1 k2 (turns :: [Generic.Type.CstrPath.GCstrChoice]) (dtName :: GHC.Types.Symbol) (cstrName :: GHC.Types.Symbol) (gf :: k1 -> GHC.Types.Type) (tag :: k2) (_md2 :: GHC.Types.Symbol) (_md3 :: GHC.Types.Symbol) (_md4 :: GHC.Types.Bool). (turns GHC.Types.~ Generic.Data.FOnCstr.AssertValidCstrPath dtName cstrName (Generic.Type.CstrPath.GCstrPath cstrName gf), GHC.Base.Functor (Generic.Data.FOnCstr.GenericFOnCstrF tag), Generic.Data.FOnCstr.GFOnCstr' tag dtName cstrName turns gf) => Generic.Data.FOnCstr.GFOnCstr tag cstrName (GHC.Generics.D1 ('GHC.Generics.MetaData dtName _md2 _md3 _md4) gf)
instance forall k1 k2 (tag :: k1) (dtName :: GHC.Types.Symbol) (cstrName :: GHC.Types.Symbol) (turns :: [Generic.Type.CstrPath.GCstrChoice]) (l :: k2 -> GHC.Types.Type) (r :: k2 -> GHC.Types.Type). (GHC.Base.Functor (Generic.Data.FOnCstr.GenericFOnCstrF tag), Generic.Data.FOnCstr.GFOnCstr' tag dtName cstrName turns l) => Generic.Data.FOnCstr.GFOnCstr' tag dtName cstrName ('Generic.Type.CstrPath.GoL1 : turns) (l GHC.Generics.:+: r)
instance forall k1 k2 (tag :: k1) (dtName :: GHC.Types.Symbol) (cstrName :: GHC.Types.Symbol) (turns :: [Generic.Type.CstrPath.GCstrChoice]) (r :: k2 -> GHC.Types.Type) (l :: k2 -> GHC.Types.Type). (GHC.Base.Functor (Generic.Data.FOnCstr.GenericFOnCstrF tag), Generic.Data.FOnCstr.GFOnCstr' tag dtName cstrName turns r) => Generic.Data.FOnCstr.GFOnCstr' tag dtName cstrName ('Generic.Type.CstrPath.GoR1 : turns) (l GHC.Generics.:+: r)
instance forall k1 k2 (tag :: k1) (dtName :: GHC.Types.Symbol) (cstrName :: GHC.Types.Symbol) (gf :: k2 -> GHC.Types.Type) (mc :: GHC.Generics.Meta). (GHC.Base.Functor (Generic.Data.FOnCstr.GenericFOnCstrF tag), Generic.Data.FOnCstr.GenericFOnCstr tag, Generic.Data.FOnCstr.GenericFOnCstrC tag dtName cstrName gf) => Generic.Data.FOnCstr.GFOnCstr' tag dtName cstrName '[] (GHC.Generics.C1 mc gf)