{-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE OverloadedStrings #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE TemplateHaskell #-} {-# OPTIONS_GHC -cpp #-} -- | Provides a simple way for the end-user deriving -- the mechanical, yet long, Element instances -- for a family. -- -- We are borrowing a some code from generic-sop -- ( https://hackage.haskell.org/package/generics-sop-0.3.2.0/docs/src/Generics-SOP-TH.html ) -- module Generics.MRSOP.TH (deriveFamily, genFamilyDebug) where import Data.Function (on) import Data.Char (ord , isAlphaNum) import Data.List (sortBy, foldl') import Control.Monad import Control.Monad.State import Control.Monad.Writer import Control.Monad.Identity import Language.Haskell.TH hiding (match) import Language.Haskell.TH.Syntax (liftString) import Generics.MRSOP.Util import Generics.MRSOP.Opaque import Generics.MRSOP.Base.Class import Generics.MRSOP.Base.NS import Generics.MRSOP.Base.NP import Generics.MRSOP.Base.Universe hiding (match) import qualified Generics.MRSOP.Base.Metadata as Meta import qualified Data.Map as M -- |Given the name of the first element in the family, -- derives: -- -- 1. The other types in the family and Konstant types one needs. -- 2. the SOP code for each of the datatypes involved -- 3. One 'Element' instance per datatype -- TODO: 4. Metadada information for each of the datatypes involved deriveFamily :: Q Type -> Q [Dec] deriveFamily t = do sty <- t >>= convertType (_ , (Idxs _ m)) <- runIdxsM (reifySTy sty) -- Now we make sure we have processed all -- types m' <- mapM extractDTI (M.toList m) let final = sortBy (compare `on` second) m' dbg <- genFamilyDebug sty final res <- genFamily sty final return (dbg ++ res) where second (_ , x , _) = x extractDTI (sty , (ix , Nothing)) = fail $ "Type " ++ show sty ++ " has no datatype information." extractDTI (sty , (ix , Just dti)) = return (sty , ix , dti) -- Sketch; -- -- Given a module: -- -- > module Test where -- > data Rose a = Fork a [Rose a] -- > $(deriveFamily [t| Rose Int |]) -- -- We will see we are looking into deriving a family -- for an AppT (ConT Rose) (ConT Int). -- -- Working with a (M.Map STy (Int , DInfo (K + I))) in a state; -- -- 0) Translate to a simpler Type-expression, call it STy. -- 1) Register (AppST (ConST Rose) (ConST Int)) as family index Z -- 2) reify lhs: [d| data Rose a = Fork a [Rose a] |] -- a) reduce rhs of (1): (\a -> Fork a [Rose a]) @ (ConT Int) -- == Fork Int [Rose Int] -- b) Take the fields that require processing: [ConT Int , AppST List (AppST Rose Int)] -- c) Somehow figure out that (ConT Int) is a Konstant. -- d) Look into (AppST List (AppST Rose Int)) -- e) Is it already processed? -- f) If yes, we are done. -- 3) Register (AppST List (AppST Rose Int))as family index (S Z) -- 4) reify lhs: [d| data List a = Nil | Cons a (List a) |] -- a) reduce rhs of (4): (\a -> Nil | Cons a (List a)) @ (AppST Rose Int) -- b) Take the fields of each constructor: -- [] , [AppST Rose Int , AppST List (AppST Rose Int)] -- c) Notice that both fields of 'Cons' have already -- been registered; hence they become: [I Z , I (S Z)] -- -- * Data Structures type DataName = Name type ConName = Name type FieldName = Name type Args = [Name] -- |Datatype information, parametrized by the type of Type-expressions -- that appear on the fields of the constructors. data DTI ty = ADT DataName Args [ CI ty ] | New DataName Args (CI ty) deriving (Eq , Show , Functor) -- |Constructor information data CI ty = Normal ConName [ty] | Infix ConName Fixity ty ty | Record ConName [ (FieldName , ty) ] deriving (Eq , Show , Functor) -- ** Monadic Maps ciMapM :: (Monad m) => (ty -> m tw) -> CI ty -> m (CI tw) ciMapM f (Normal name tys) = Normal name <$> mapM f tys ciMapM f (Infix name x l r) = Infix name x <$> f l <*> f r ciMapM f (Record name tys) = Record name <$> mapM (rstr . (id *** f)) tys where rstr (a , b) = b >>= return . (a,) dtiMapM :: (Monad m) => (ty -> m tw) -> DTI ty -> m (DTI tw) dtiMapM f (ADT name args ci) = ADT name args <$> mapM (ciMapM f) ci dtiMapM f (New name args ci) = New name args <$> ciMapM f ci dti2ci :: DTI ty -> [CI ty] dti2ci (ADT _ _ cis) = cis dti2ci (New _ _ ci) = [ ci ] ci2ty :: CI ty -> [ty] ci2ty (Normal _ tys) = tys ci2ty (Infix _ _ a b) = [a , b] ci2ty (Record _ tys) = map snd tys ciName :: CI ty -> Name ciName (Normal n _) = n ciName (Infix n _ _ _) = n ciName (Record n _) = n ci2Pat :: CI ty -> Q ([Name] , Pat) ci2Pat ci = do ns <- mapM (const (newName "x")) (ci2ty ci) return (ns , (ConP (ciName ci) (map VarP ns))) ci2Exp :: CI ty -> Q ([Name], Exp) ci2Exp ci = do ns <- mapM (const (newName "y")) (ci2ty ci) return (ns , foldl (\e n -> AppE e (VarE n)) (ConE (ciName ci)) ns) -- * Simpler STy Language -- A Simplified version of Language.Haskell.TH data STy = AppST STy STy | VarST Name | ConST Name deriving (Eq , Show, Ord) styFold :: (a -> a -> a) -> (Name -> a) -> (Name -> a) -> STy -> a styFold app var con (AppST a b) = app (styFold app var con a) (styFold app var con b) styFold app var con (VarST n) = var n styFold app var con (ConST n) = con n -- |Does a STy have a varible name? isClosed :: STy -> Bool isClosed = styFold (&&) (const False) (const True) -- ** Back and Forth conversion convertType :: (Monad m) => Type -> m STy convertType (AppT a b) = AppST <$> convertType a <*> convertType b convertType (SigT t _) = convertType t convertType (VarT n) = return (VarST n) convertType (ConT n) = return (ConST n) convertType (ParensT t) = convertType t convertType ListT = return (ConST (mkName "[]")) convertType (TupleT n) = return (ConST (mkName $ '(':replicate (n-1) ',' ++ ")")) convertType t = fail ("convertType: Unsupported Type: " ++ show t) trevnocType :: STy -> Type trevnocType (AppST a b) = AppT (trevnocType a) (trevnocType b) trevnocType (VarST n) = VarT n trevnocType (ConST n) | n == mkName "[]" = ListT | isTupleN n = TupleT $ length (show n) - 1 | otherwise = ConT n where isTupleN n = take 2 (show n) == "(," -- |Handy substitution function. -- -- @stySubst t m n@ substitutes m for n within t, that is: t[m/n] stySubst :: STy -> Name -> STy -> STy stySubst (AppST a b) m n = AppST (stySubst a m n) (stySubst b m n) stySubst (ConST a) m n = ConST a stySubst (VarST x) m n | x == m = n | otherwise = VarST x -- |Just like subst, but applies a list of substitutions styReduce :: [(Name , STy)] -> STy -> STy styReduce parms t = foldr (\(n , m) ty -> stySubst ty n m) t parms -- |Flattens an application into a list of arguments; -- -- @styFlatten (AppST (AppST Tree A) B) == (Tree , [A , B])@ styFlatten :: STy -> (STy , [STy]) styFlatten (AppST a b) = id *** (++ [b]) $ styFlatten a styFlatten sty = (sty , []) -- * Parsing Haskell's AST reifyDec :: Name -> Q Dec reifyDec name = do info <- reify name case info of TyConI dec -> return dec _ -> fail $ show name ++ " is not a declaration" argInfo :: TyVarBndr -> Name argInfo (PlainTV n) = n argInfo (KindedTV n _) = n -- Extracts a DTI from a Dec decInfo :: Dec -> Q (DTI STy) decInfo (TySynD name args ty) = fail "Type Synonyms not supported" decInfo (DataD _ name args _ cons _) = ADT name (map argInfo args) <$> mapM conInfo cons decInfo (NewtypeD _ name args _ con _) = New name (map argInfo args) <$> conInfo con decInfo _ = fail "Only type declarations are supported" -- Extracts a CI from a Con conInfo :: Con -> Q (CI STy) conInfo (NormalC name ty) = Normal name <$> mapM (convertType . snd) ty conInfo (RecC name ty) = Record name <$> mapM (\(s , _ , t) -> (s,) <$> convertType t) ty conInfo (InfixC l name r) = do info <- reifyFixity name let fixity = maybe defaultFixity id $ info Infix name fixity <$> convertType (snd l) <*> convertType (snd r) conInfo (ForallC _ _ _) = fail "Existentials not supported" #if MIN_VERSION_template_haskell(2,11,0) conInfo (GadtC _ _ _) = fail "GADTs not supported" conInfo (RecGadtC _ _ _) = fail "GADTs not supported" #endif -- |Reduces the rhs of a datatype declaration -- with some provided arguments. Step (2.a) of our sketch. -- -- Precondition: application is fully saturated; -- ie, args and parms have the same length -- dtiReduce :: DTI STy -> [STy] -> DTI STy dtiReduce (ADT name args cons) parms = ADT name [] (map (ciReduce (zip args parms)) cons) dtiReduce (New name args con) parms = New name [] (ciReduce (zip args parms) con) ciReduce :: [(Name , STy)] -> CI STy -> CI STy ciReduce parms ci = runIdentity (ciMapM (return . styReduce parms) ci) -- * Monad -- -- Keeks the (M.Map STy (Int , DTI Sty)) in a state. data IK = AtomI Int | AtomK Name deriving (Eq , Show) ikElim :: (Int -> a) -> (Name -> a) -> IK -> a ikElim i k (AtomI n) = i n ikElim i k (AtomK n) = k n data Idxs = Idxs { idxsNext :: Int , idxsMap :: M.Map STy (Int , Maybe (DTI IK)) } deriving (Show) onMap :: (M.Map STy (Int , Maybe (DTI IK)) -> M.Map STy (Int , Maybe (DTI IK))) -> Idxs -> Idxs onMap f (Idxs n m) = Idxs n (f m) type IdxsM = StateT Idxs runIdxsM :: (Monad m) => IdxsM m a -> m (a , Idxs) runIdxsM = flip runStateT (Idxs 0 M.empty) -- |The actual monad we need to run all of this; type M = IdxsM Q -- |Returns the index of a "Name" within the family. -- If this name has not been registered yet, returns -- a fresh index. indexOf :: (Monad m) => STy -> IdxsM m Int indexOf name = do st <- get case M.lookup name (idxsMap st) of Just i -> return (fst i) Nothing -> let i = idxsNext st in put (Idxs (i + 1) (M.insert name (i , Nothing) (idxsMap st))) >> return i -- |Register some Datatype Information for a given STy register :: (Monad m) => STy -> DTI IK -> IdxsM m () register ty info = indexOf ty -- the call to indexOf guarantees the -- adjust will do something; >> modify (onMap $ M.adjust (id *** const (Just info)) ty) -- | All the necessary lookups: lkup :: (Monad m) => STy -> IdxsM m (Maybe (Int , Maybe (DTI IK))) lkup ty = M.lookup ty . idxsMap <$> get lkupInfo :: (Monad m) => STy -> IdxsM m (Maybe Int) lkupInfo ty = fmap fst <$> lkup ty lkupData :: (Monad m) => STy -> IdxsM m (Maybe (DTI IK)) lkupData ty = join . fmap snd <$> lkup ty hasData :: (Monad m) => STy -> IdxsM m Bool hasData ty = maybe False (const True) <$> lkupData ty ---------------------------- -- * Preprocessing Data * -- ---------------------------- -- |Performs step 2 of the sketch; reifySTy :: STy -> M () reifySTy sty = do ix <- indexOf sty uncurry go (styFlatten sty) where go :: STy -> [STy] -> M () go (ConST name) args = do dec <- lift (reifyDec name >>= decInfo) -- TODO: Check that the precondition holds. let res = dtiReduce dec args (final , todo) <- runWriterT $ dtiMapM convertSTy res register sty final mapM_ reifySTy todo -- Convert the STy's in the fields of the constructors; -- tells a list of STy's we still need to process. convertSTy :: STy -> WriterT [STy] M IK convertSTy ty -- We remove sty from the list of todos -- otherwise we get an infinite loop | ty == sty = AtomI <$> lift (indexOf ty) | isClosed ty = case makeCons ty of Just k -> return (AtomK k) Nothing -> do ix <- lift (indexOf ty) hasDti <- lift (hasData ty) when (not hasDti) (tell [ty]) return (AtomI ix) | otherwise = fail $ "I can't convert type variable " ++ show ty ++ " when converting " ++ show sty makeCons :: STy -> Maybe Name makeCons (ConST n) = M.lookup n consTable makeCons _ = Nothing consTable = M.fromList . map (id *** mkName) $ [ ( ''Int , "KInt") , ( ''Char , "KChar") , ( ''Integer , "KInteger") , ( ''Float , "KFloat") , ( ''Bool , "KBool") , ( ''String , "KString") , ( ''Double , "KDouble") ] ----------------------------- -- * Generating the Code * -- ----------------------------- -- Code generation happens in a few separate parts. -- Given a datatype: -- -- > data R a = a :>: [R a] -- > | Leaf a -- > deriving Show -- -- We need to generate: -- -- 1. The Family and the codes -- 1.1 > type FamRose = '[ [R Int] , R Int ] -- 1.2 > type D0_ = Z -- > type D1_ = S Z -- 1.3 > type CodesRose = '[ '[ '[] , '[I D1_ , I D0_] ] -- > , '[ '[K KInt , I D0_] , '[K KInt] ] -- > ] -- -- 2. The index of each type in the family. -- 2.1 types -- > pattern IdxRInt = SZ -- > pattern IdxListInt = SS SZ -- -- 2.1.1 Here-There Synonyms -- > pattern HT0_ d = Here d -- > pattern HT1_ d = There (Here d) -- -- 2.2. constructors -- > pattern a :>:_ as = Tag CZ (NA_K a :* NA_I (El as) :* NP0) -- > pattern Leaf_ a = Tag (CS CZ) (NA_K a :* NP0) -- > pattern nil_ = Tag CZ NP0 -- > pattern a :_ as = Tag (CS CZ) (NA_I a :* NA_I (El as) :* NP0) -- -- 3. The instance: -- > instance Family Singl FamRose CodesRose where -- -- 3.1. for each type in (1) -- > sfrom' (SS SZ) (El (a :>: as)) -- > = Rep $ HT0_ (NA_K (SInt a) :* NA_I (El as) :* NP0) -- > sfrom' (SS SZ) (El (Leaf a)) -- > = Rep $ HT1_ (NA_K (SInt a) :* NP0) -- > sfrom' SZ (El []) -- > = Rep $ HT0_ NP0 -- > sfrom' SZ (El (x:xs)) -- > = Rep $ HT1_ (NA_I (El x) :* NA_I (El xs) :* NP0) -- -- 3.2. -- > -- > sto' SZ (Rep (HT0_ NP0)) -- > = El [] -- > sto' SZ (Rep (HT1_ (NA_I (El x) :* NA_I (El xs) :* NP0))) -- > = El (x : xs) -- > sto' (SS SZ) (Rep (HT0_ (NA_K (SInt a) :* NA_I (El as) :* NP0))) -- > = El (a :>: as) -- > sto' (SS SZ) (Rep (HT1_ (NA_K (SInt a) :* NP0))) -- > = El (Leaf a) -- -- 4. Metadata for each type in (1) -- > instance HasDatatypeInfo Singl FamRose CodesRose Z where ... -- > instance HasDatatypeInfo Singl FamRose codesRose (S Z) where ... -- -- |The input data for the generation is an ordered list -- (on the second component of the tuple) of STy's and -- their datatype info. type Input = [(STy , Int , DTI IK)] -- Generates a type-level list of 'a's tlListOf :: (a -> Type) -> [a] -> Type tlListOf f = foldr (\h r -> AppT (AppT PromotedConsT (f h)) r) PromotedNilT -- generate a type-level Nat int2Type :: Int -> Type int2Type 0 = tyZ int2Type n = AppT tyS (int2Type (n - 1)) -- generate the name of the type synonym corresponding to -- this int. int2TySynName :: Int -> Name int2TySynName i = mkName $ "D" ++ show i ++ "_" -- generates a Snat for the given Int int2SNatPat :: Int -> Pat int2SNatPat 0 = ConP (mkName "SZ") [] int2SNatPat n = ConP (mkName "SS") [int2SNatPat $ n-1] -- Our promoted type constructors tyS = PromotedT (mkName "S") tyZ = PromotedT (mkName "Z") tyI = PromotedT (mkName "I") tyK = PromotedT (mkName "K") -- Generate rhs of piece (1.3) inputToCodes :: Input -> Q Type inputToCodes = return . tlListOf dti2Codes . map third where third (_ , _ , x) = x dti2Codes :: DTI IK -> Type dti2Codes = tlListOf ci2Codes . dti2ci ci2Codes :: CI IK -> Type ci2Codes = tlListOf ik2Codes . ci2ty ik2Codes :: IK -> Type -- VCM: int pattern synonyms make too many name clashes -- if we mix up modules. ik2Codes (AtomI n) = AppT tyI $ int2Type n -- ConT (int2TySynName n) ik2Codes (AtomK k) = AppT tyK $ PromotedT k -- Generates piece (1.2); we do so by -- finding what's the maximum type index used -- in all DatatypeInformation we have and then generate -- all type synonyms up to it. inputToTySynNums :: Input -> Q [Dec] inputToTySynNums input = let maxI = maximum $ map (localMax . third) input in return $ map genTySynNum [0..maxI] where third (_ , _ , x) = x localMax :: DTI IK -> Int localMax = foldr (\ci aux -> aux `max` getMaxIdx (ci2ty ci)) 0 . dti2ci getMaxIdx :: [IK] -> Int getMaxIdx = foldr (ikElim max (const id)) 0 genTySynNum i = TySynD (int2TySynName i) [] (int2Type i) -- generates rhs of piece (1.1) inputToFam :: Input -> Q Type inputToFam = return . tlListOf trevnocType . map first where first (x , _ , _) = x -- | @styToName "List (R Int)" == "ListRInt"@ styToName :: STy -> Name styToName = mkName . styFold (++) nameBase (fixList . nameBase) where -- VCM: ugly hack; but list is a reserved name. -- The hack is needed either here or in reify. fixList :: String -> String fixList n | n == "[]" = "List" | take 2 n == "(," = "Tup" ++ show (length n - 2) | otherwise = n onBaseName :: (String -> String) -> Name -> Name onBaseName f = mkName . f . nameBase codesName :: STy -> Q Name codesName = return . onBaseName ("Codes" ++) . styToName familyName :: STy -> Q Name familyName = return . onBaseName ("Fam" ++) . styToName genPiece1 :: STy -> Input -> Q [Dec] genPiece1 first ls = do -- nums <- inputToTySynNums ls codes <- TySynD <$> codesName first <*> return [] <*> inputToCodes ls fam <- TySynD <$> familyName first <*> return [] <*> inputToFam ls return [fam , codes] -- (nums ++ [fam , codes]) idxPatSynName :: STy -> Name idxPatSynName = styToName . (AppST (ConST (mkName "Idx"))) idxPatSyn :: STy -> Pat idxPatSyn = flip ConP [] . idxPatSynName -- |@htPatSynName ci@ will generate the -- pattern synonym name for constructor ci. -- -- Since all our patterns are supposed to be @PrefixPatSyn@s, -- we need to translate the infix names to something -- Haskell will accept. htPatSynName :: Int -> CI IK -> Name htPatSynName dtiIx ci = mkName . translate . nameBase . ciName $ ci where translate = ("Pat" ++) . foldl' (\str l -> str ++ tr l ) (show dtiIx) tr l | isAlphaNum l = l:[] | otherwise = show $ ord l htPatSynExp :: Int -> CI IK -> Q Exp htPatSynExp dtiIx = return . ConE . htPatSynName dtiIx genIdxPatSyn :: STy -> Int -> Q Dec genIdxPatSyn sty ix = return (PatSynD (idxPatSynName sty) (PrefixPatSyn []) ImplBidir (int2SNatPat ix)) genHereTherePatSyn :: STy -> Input -> Q [Dec] genHereTherePatSyn first ls = flat . concat <$> mapM (\(_ , ix , dti) -> genHereThereFor ix dti) ls where flat = foldl' (\ac (x , y) -> x:y:ac) [] third (_ , _, x) = x famName = ConT <$> familyName first inj :: Int -> Q Pat -> Q Pat inj 0 p = [p| Here $p |] inj n p = [p| There ( $(inj (n-1) p) ) |] -- Returns one pattern synonym for each constructor in -- the datatype and a type signature for it. genHereThereFor :: Int -> DTI IK -> Q [(Dec , Dec)] genHereThereFor dtiIx dti = do let dtiCode = dti2Codes dti let cisIx = zip [0..] (dti2ci dti) forM cisIx $ \ (ix , ci) -> (,) <$> genHT_decl dtiCode dtiIx ix ci <*> genHT_def dtiIx ix ci genHT_decl dtiCode dtiIx ix ci = PatSynSigD (htPatSynName dtiIx ci) <$> [t| PoA Singl (El $famName) $(return $ ci2Codes ci) -> NS (PoA Singl (El $famName)) $(return dtiCode) |] genHT_def dtiIx ix ci = do var <- newName "d" PatSynD (htPatSynName dtiIx ci) (PrefixPatSyn [var]) ImplBidir <$> inj ix (return $ VarP var) -- |Generating pattern sinonyms for the type indexes -- and the 'Here/There' combinations. (pieces 2.1 and 2.1.1) -- -- > pattern IdxRInt = SZ -- > pattern IdxListRInt = SS SZ -- genPiece2 :: STy -> Input -> Q [Dec] genPiece2 first ls = do p21 <- mapM (\(sty , ix , dti) -> genIdxPatSyn sty ix) ls p211 <- genHereTherePatSyn first ls return $ p21 ++ p211 genPiece3 :: STy -> Input -> Q Dec genPiece3 first ls = head <$> [d| instance Family Singl $(ConT <$> familyName first) $(ConT <$> codesName first) where sfrom' = $(genPiece3_1 ls) sto' = $(genPiece3_2 ls) |] -- |Given a datatype information, generates a pattern -- and an expression from it. The int here -- indicates the number of the constructor. -- -- > ci2PatExp IdxBinTree (Normal "Bin" [VarT a , VarT a]) -- > = ( El (Bin x_1 x_2) -- > , Rep (PatBin_IdxBinTree (NA_I (El x_1) :* NA_I (El x_2) :* NP0)) -- > ) ci2PatExp :: Int -> CI IK -> Q (Pat , Exp) ci2PatExp dtiIx ci = do (vars , pat) <- ci2Pat ci bdy <- [e| Rep $(inj $ genBdy (zip vars (ci2ty ci))) |] return (ConP (mkName "El") [pat] , bdy) where inj :: Q Exp -> Q Exp -- inj 0 e = [e| Here $e |] -- inj n e = [e| There $(inj (n-1) e) |] inj e = [e| $(htPatSynExp dtiIx ci) $e |] genBdy :: [(Name , IK)] -> Q Exp genBdy [] = [e| NP0 |] genBdy (x : xs) = [e| $(mkHead x) :* ( $(genBdy xs) ) |] mkHead (x , AtomI _) = [e| NA_I (El $(return (VarE x))) |] mkHead (x , AtomK k) = [e| NA_K $(return (AppE (ConE (mkK k)) (VarE x))) |] mkK k = mkName $ 'S':tail (nameBase k) -- | Just like 'ci2PatExp', but the other way around. -- -- > ci2ExpPat IdxBinTree (Normal "Bin" [VarT a , VarT a]) -- > = ( Rep (PatBin_IdxBinTree (NA_I (El x_1) :* NA_I (El x_2) :* NP0)) -- , El (Bin x_1 x_2) -- > ) ci2ExpPat :: Int -> CI IK -> Q (Pat , Exp) ci2ExpPat dtiIx ci = do (vars , exp) <- ci2Exp ci pat <- [p| Rep $(inj $ genBdy (zip vars (ci2ty ci))) |] return (pat , AppE (ConE $ mkName "El") exp) where inj :: Q Pat -> Q Pat -- inj 0 e = [p| Here $e |] -- inj n e = [p| There $(inj (n-1) e) |] inj e = ConP (htPatSynName dtiIx ci) . (:[]) <$> e genBdy :: [(Name , IK)] -> Q Pat genBdy [] = [p| NP0 |] genBdy (x : xs) = [p| $(mkHead x) :* ( $(genBdy xs) ) |] mkHead (x , AtomI _) = [p| NA_I (El $(return (VarP x))) |] mkHead (x , AtomK k) = [p| NA_K $(return (ConP (mkK k) [VarP x])) |] mkK k = mkName $ 'S':tail (nameBase k) match :: Pat -> Exp -> Match match pat bdy = Match pat (NormalB bdy) [] -- Adds a matchall clause; for instance: -- -- > matchAll [Just x -> 1] = [Just x -> 1 , _ -> error "matchAll"] -- matchAll :: [Match] -> [Match] matchAll = (++ [match WildP err]) where err = AppE (VarE (mkName "error")) (LitE (StringL "matchAll")) genPiece3_1 :: Input -> Q Exp genPiece3_1 input = LamCaseE <$> mapM (\(sty , ix , dti) -> clauseForIx sty ix dti) input where clauseForIx :: STy -> Int -> DTI IK -> Q Match clauseForIx sty ix dti = match (idxPatSyn sty) <$> (LamCaseE <$> genMatchFor ix dti) genMatchFor :: Int -> DTI IK -> Q [Match] genMatchFor ix dti = map (uncurry match) <$> mapM (ci2PatExp ix) (dti2ci dti) genPiece3_2 :: Input -> Q Exp genPiece3_2 input = LamCaseE . matchAll <$> mapM (\(sty , ix , dti) -> clauseForIx sty ix dti) input where clauseForIx :: STy -> Int -> DTI IK -> Q Match clauseForIx sty ix dti = match (idxPatSyn sty) <$> (LamCaseE . matchAll <$> genMatchFor ix dti) genMatchFor :: Int -> DTI IK -> Q [Match] genMatchFor ix dti = map (uncurry match) <$> mapM (ci2ExpPat ix) (dti2ci dti) genPiece4 :: STy -> Input -> Q [Dec] genPiece4 first ls = concat <$> mapM genDatatypeInfoInstance ls where genDatatypeInfoInstance :: (STy , Int , DTI IK) -> Q [Dec] genDatatypeInfoInstance (sty , idx , dti) = [d| instance Meta.HasDatatypeInfo Singl $(ConT <$> familyName first) $(ConT <$> codesName first) $(return (int2Type idx)) where datatypeInfo _ _ = $(genInfo sty dti) |] genMod :: Name -> Q Exp genMod = strlit . maybe "" id . nameModule strlit :: String -> Q Exp strlit = return . LitE . StringL genDatatypeName :: STy -> Q Exp genDatatypeName = styFold (\e1 e2 -> [e| ( $e1 Meta.:@: $e2 ) |]) (\n -> [e| Meta.Name $(strlit (nameBase n)) |] ) (\n -> [e| Meta.Name $(strlit (nameBase n)) |] ) genInfo :: STy -> DTI IK -> Q Exp genInfo sty (ADT name _ cis) = [e| Meta.ADT $(genMod name) $(genDatatypeName sty) $(genConInfoNP cis) |] genInfo sty (New name _ ci) = [e| Meta.New $(genMod name) $(genDatatypeName sty) $(genConInfo ci) |] genConInfo :: CI IK -> Q Exp genConInfo (Record conname fields) = [e| Meta.Record $(strlit $ nameBase conname) $(genFieldInfo $ map fst fields) |] genConInfo (Normal conname _) = [e| Meta.Constructor $(strlit $ nameBase conname) |] genConInfo (Infix conname fix _ _) = [e| Meta.Infix $(strlit $ nameBase conname) $(genAssoc fix) $(genFix fix) |] where genAssoc (Fixity _ InfixL) = [e| Meta.LeftAssociative |] genAssoc (Fixity _ InfixR) = [e| Meta.RightAssociative |] genAssoc (Fixity _ InfixN) = [e| Meta.NotAssociative |] genFix (Fixity i _) = return . LitE . IntegerL . fromIntegral $ i genFieldInfo :: [ FieldName ] -> Q Exp genFieldInfo [] = [e| NP0 |] genFieldInfo (f:fs) = [e| Meta.FieldInfo $(strlit . nameBase $ f) :* ( $(genFieldInfo fs) ) |] genConInfoNP :: [ CI IK ] -> Q Exp genConInfoNP [] = [e| NP0 |] genConInfoNP (ci:cis) = [e| $(genConInfo ci) :* ( $(genConInfoNP cis) ) |] -- |@genFamily init fam@ generates a type-level list -- of the codes for the family. It also generates -- the necessary 'Element' instances. -- TODO: generate the 'HasDatatypeInfo' instances too! -- -- Precondition, input is sorted on second component. genFamily :: STy -> Input -> Q [Dec] genFamily first ls = do p1 <- genPiece1 first ls p2 <- genPiece2 first ls p3 <- genPiece3 first ls p4 <- genPiece4 first ls return $ p1 ++ p2 ++ [p3] ++ p4 -- |Generates a bunch of strings for debug purposes. genFamilyDebug :: STy -> [(STy , Int , DTI IK)] -> Q [Dec] genFamilyDebug _ ms = concat <$> mapM genDec ms where genDec :: (STy , Int , DTI IK) -> Q [Dec] genDec (sty , ix , dti) = [d| $( genPat ix ) = $(mkBody dti) |] mkBody :: DTI IK -> Q Exp mkBody dti = [e| $(liftString $ show dti) |] genPat :: Int -> Q Pat genPat n = genName n >>= \name -> return (VarP name) genName :: Int -> Q Name genName n = return (mkName $ "tyInfo_" ++ show n)