{-# LANGUAGE TemplateHaskell #-} -- | Generate @generics-sop@ boilerplate instances using Template Haskell. module Generics.SOP.TH ( deriveGeneric , deriveGenericOnly , deriveGenericSubst , deriveGenericOnlySubst , deriveGenericFunctions , deriveMetadataValue , deriveMetadataType ) where import Control.Monad (join, replicateM, unless) import Data.List (foldl') import Data.Maybe (fromMaybe) import Data.Proxy -- importing in this order to avoid unused import warning import Language.Haskell.TH.Datatype.TyVarBndr import Language.Haskell.TH import Language.Haskell.TH.Datatype as TH import Generics.SOP.BasicFunctors import qualified Generics.SOP.Metadata as SOP import qualified Generics.SOP.Type.Metadata as SOP.T import Generics.SOP.NP import Generics.SOP.NS import Generics.SOP.Universe -- | Generate @generics-sop@ boilerplate for the given datatype. -- -- This function takes the name of a datatype and generates: -- -- * a 'Code' instance -- * a 'Generic' instance -- * a 'HasDatatypeInfo' instance -- -- Note that the generated code will require the @TypeFamilies@ and -- @DataKinds@ extensions to be enabled for the module. -- -- /Example:/ If you have the datatype -- -- > data Tree = Leaf Int | Node Tree Tree -- -- and say -- -- > deriveGeneric ''Tree -- -- then you get code that is equivalent to: -- -- > instance Generic Tree where -- > -- > type Code Tree = '[ '[Int], '[Tree, Tree] ] -- > -- > from (Leaf x) = SOP ( Z (I x :* Nil)) -- > from (Node l r) = SOP (S (Z (I l :* I r :* Nil))) -- > -- > to (SOP (Z (I x :* Nil))) = Leaf x -- > to (SOP (S (Z (I l :* I r :* Nil)))) = Node l r -- > to (SOP (S (S x))) = x `seq` error "inaccessible" -- > -- > instance HasDatatypeInfo Tree where -- > type DatatypeInfoOf Tree = -- > T.ADT "Main" "Tree" -- > '[ T.Constructor "Leaf", T.Constructor "Node" ] -- > -- > datatypeInfo _ = -- > T.demoteDatatypeInfo (Proxy :: Proxy (DatatypeInfoOf Tree)) -- -- /Limitations:/ Generation does not work for GADTs, for -- datatypes that involve existential quantification, for -- datatypes with unboxed fields. -- deriveGeneric :: Name -> Q [Dec] deriveGeneric n = deriveGenericSubst n varT -- | Like 'deriveGeneric', but omit the 'HasDatatypeInfo' instance. deriveGenericOnly :: Name -> Q [Dec] deriveGenericOnly n = deriveGenericOnlySubst n varT -- | Variant of 'deriveGeneric' that allows to restrict the type parameters. -- -- Experimental function, exposed primarily for benchmarking. -- deriveGenericSubst :: Name -> (Name -> Q Type) -> Q [Dec] deriveGenericSubst n f = do dec <- reifyDatatype n ds1 <- withDataDec dec (deriveGenericForDataDec f) ds2 <- withDataDec dec (deriveMetadataForDataDec f) return (ds1 ++ ds2) -- | Variant of 'deriveGenericOnly' that allows to restrict the type parameters. -- -- Experimental function, exposed primarily for benchmarking. -- deriveGenericOnlySubst :: Name -> (Name -> Q Type) -> Q [Dec] deriveGenericOnlySubst n f = do dec <- reifyDatatype n withDataDec dec (deriveGenericForDataDec f) -- | Like 'deriveGenericOnly', but don't derive class instance, only functions. -- -- /Example:/ If you say -- -- > deriveGenericFunctions ''Tree "TreeCode" "fromTree" "toTree" -- -- then you get code that is equivalent to: -- -- > type TreeCode = '[ '[Int], '[Tree, Tree] ] -- > -- > fromTree :: Tree -> SOP I TreeCode -- > fromTree (Leaf x) = SOP ( Z (I x :* Nil)) -- > fromTree (Node l r) = SOP (S (Z (I l :* I r :* Nil))) -- > -- > toTree :: SOP I TreeCode -> Tree -- > toTree (SOP (Z (I x :* Nil))) = Leaf x -- > toTree (SOP (S (Z (I l :* I r :* Nil)))) = Node l r -- > toTree (SOP (S (S x))) = x `seq` error "inaccessible" -- -- @since 0.2 -- deriveGenericFunctions :: Name -> String -> String -> String -> Q [Dec] deriveGenericFunctions n codeName fromName toName = do let codeName' = mkName codeName let fromName' = mkName fromName let toName' = mkName toName dec <- reifyDatatype n withDataDec dec $ \_variant _cxt name bndrs instTys cons -> do let codeType = codeFor varT cons -- '[ '[Int], '[Tree, Tree] ] let origType = appTysSubst varT name instTys -- Tree let repType = [t| SOP I $(appTyVars varT codeName' bndrs) |] -- SOP I TreeCode sequence [ tySynD codeName' bndrs codeType -- type TreeCode = '[ '[Int], '[Tree, Tree] ] , sigD fromName' [t| $origType -> $repType |] -- fromTree :: Tree -> SOP I TreeCode , embedding fromName' cons -- fromTree ... = , sigD toName' [t| $repType -> $origType |] -- toTree :: SOP I TreeCode -> Tree , projection toName' cons -- toTree ... = ] -- | Derive @DatatypeInfo@ value for the type. -- -- /Example:/ If you say -- -- > deriveMetadataValue ''Tree "TreeCode" "treeDatatypeInfo" -- -- then you get code that is equivalent to: -- -- > treeDatatypeInfo :: DatatypeInfo TreeCode -- > treeDatatypeInfo = ADT "Main" "Tree" -- > (Constructor "Leaf" :* Constructor "Node" :* Nil) -- -- /Note:/ CodeType needs to be derived with 'deriveGenericFunctions'. -- -- @since 0.2 -- deriveMetadataValue :: Name -> String -> String -> Q [Dec] deriveMetadataValue n codeName datatypeInfoName = do let codeName' = mkName codeName let datatypeInfoName' = mkName datatypeInfoName dec <- reifyDatatype n withDataDec dec $ \variant _cxt name bndrs _instTys cons -> do sequence [ sigD datatypeInfoName' [t| SOP.DatatypeInfo $(appTyVars varT codeName' bndrs) |] -- treeDatatypeInfo :: DatatypeInfo TreeCode , funD datatypeInfoName' [clause [] (normalB $ metadata' variant name cons) []] -- treeDatatypeInfo = ... ] {-# DEPRECATED deriveMetadataValue "Use 'deriveMetadataType' and 'demoteDatatypeInfo' instead." #-} -- | Derive @DatatypeInfo@ type for the type. -- -- /Example:/ If you say -- -- > deriveMetadataType ''Tree "TreeDatatypeInfo" -- -- then you get code that is equivalent to: -- -- > type TreeDatatypeInfo = -- > T.ADT "Main" "Tree" -- > [ T.Constructor "Leaf", T.Constructor "Node" ] -- -- @since 0.3.0.0 -- deriveMetadataType :: Name -> String -> Q [Dec] deriveMetadataType n datatypeInfoName = do let datatypeInfoName' = mkName datatypeInfoName dec <- reifyDatatype n withDataDec dec $ \ variant _ctx name _bndrs _instTys cons -> sequence [ tySynD datatypeInfoName' [] (metadataType' variant name cons) ] deriveGenericForDataDec :: (Name -> Q Type) -> DatatypeVariant -> Cxt -> Name -> [TyVarBndrUnit] -> [Type] -> [TH.ConstructorInfo] -> Q [Dec] deriveGenericForDataDec f _variant _cxt name _bndrs instTys cons = do let typ = appTysSubst f name instTys deriveGenericForDataType f typ cons deriveGenericForDataType :: (Name -> Q Type) -> Q Type -> [TH.ConstructorInfo] -> Q [Dec] deriveGenericForDataType f typ cons = do let codeSyn = tySynInstDCompat ''Generics.SOP.Universe.Code Nothing [typ] (codeFor f cons) inst <- instanceD (cxt []) [t| Generic $typ |] [codeSyn, embedding 'from cons, projection 'to cons] return [inst] deriveMetadataForDataDec :: (Name -> Q Type) -> DatatypeVariant -> Cxt -> Name -> [TyVarBndrUnit] -> [Type] -> [TH.ConstructorInfo] -> Q [Dec] deriveMetadataForDataDec f variant _cxt name _bndrs instTys cons = do let typ = appTysSubst f name instTys deriveMetadataForDataType variant name typ cons deriveMetadataForDataType :: DatatypeVariant -> Name -> Q Type -> [TH.ConstructorInfo] -> Q [Dec] deriveMetadataForDataType variant name typ cons = do md <- instanceD (cxt []) [t| HasDatatypeInfo $typ |] [ metadataType typ variant name cons , funD 'datatypeInfo [ clause [wildP] (normalB [| SOP.T.demoteDatatypeInfo (Proxy :: Proxy (DatatypeInfoOf $typ)) |]) [] ] ] -- [metadata variant name cons] return [md] {------------------------------------------------------------------------------- Computing the code for a data type -------------------------------------------------------------------------------} codeFor :: (Name -> Q Type) -> [TH.ConstructorInfo] -> Q Type codeFor f = promotedTypeList . map go where go :: TH.ConstructorInfo -> Q Type go c = do (_, ts) <- conInfo c promotedTypeListSubst f ts {------------------------------------------------------------------------------- Computing the embedding/projection pair -------------------------------------------------------------------------------} embedding :: Name -> [TH.ConstructorInfo] -> Q Dec embedding fromName = funD fromName . go' (\e -> [| Z $e |]) where go' :: (Q Exp -> Q Exp) -> [TH.ConstructorInfo] -> [Q Clause] go' _ [] = (:[]) $ do x <- newName "x" clause [varP x] (normalB (caseE (varE x) [])) [] go' br cs = go br cs go :: (Q Exp -> Q Exp) -> [TH.ConstructorInfo] -> [Q Clause] go _ [] = [] go br (c:cs) = mkClause br c : go (\e -> [| S $(br e) |]) cs mkClause :: (Q Exp -> Q Exp) -> TH.ConstructorInfo -> Q Clause mkClause br c = do (n, ts) <- conInfo c vars <- replicateM (length ts) (newName "x") clause [conP n (map varP vars)] (normalB [| SOP $(br . npE . map (appE (conE 'I) . varE) $ vars) |]) [] projection :: Name -> [TH.ConstructorInfo] -> Q Dec projection toName = funD toName . go' where go' :: [TH.ConstructorInfo] -> [Q Clause] go' [] = (:[]) $ do x <- newName "x" clause [varP x] (normalB (caseE (varE x) [])) [] go' cs = go id cs go :: (Q Pat -> Q Pat) -> [TH.ConstructorInfo] -> [Q Clause] go br [] = [mkUnreachableClause br] go br (c:cs) = mkClause br c : go (\p -> conP 'S [br p]) cs -- Generates a final clause of the form: -- -- to (S (... (S x))) = x `seq` error "inaccessible" -- -- An equivalent way of achieving this would be: -- -- to (S (... (S x))) = case x of {} -- -- This, however, would require clients to enable the EmptyCase extension -- in their own code, which is something which we have not previously -- required. Therefore, we do not generate this code at the moment. mkUnreachableClause :: (Q Pat -> Q Pat) -> Q Clause mkUnreachableClause br = do var <- newName "x" clause [conP 'SOP [br (varP var)]] (normalB [| $(varE var) `seq` error "inaccessible" |]) [] mkClause :: (Q Pat -> Q Pat) -> TH.ConstructorInfo -> Q Clause mkClause br c = do (n, ts) <- conInfo c vars <- replicateM (length ts) (newName "x") clause [conP 'SOP [br . conP 'Z . (:[]) . npP . map (\v -> conP 'I [varP v]) $ vars]] (normalB . appsE $ conE n : map varE vars) [] {------------------------------------------------------------------------------- Compute metadata -------------------------------------------------------------------------------} metadataType :: Q Type -> DatatypeVariant -> Name -> [TH.ConstructorInfo] -> Q Dec metadataType typ variant typeName cs = tySynInstDCompat ''DatatypeInfoOf Nothing [typ] (metadataType' variant typeName cs) -- | Derive term-level metadata. metadata' :: DatatypeVariant -> Name -> [TH.ConstructorInfo] -> Q Exp metadata' dataVariant typeName cs = md where md :: Q Exp md | isNewtypeVariant dataVariant = [| SOP.Newtype $(stringE (nameModule' typeName)) $(stringE (nameBase typeName)) $(mdCon (head cs)) |] | otherwise = [| SOP.ADT $(stringE (nameModule' typeName)) $(stringE (nameBase typeName)) $(npE $ map mdCon cs) $(popE $ map mdStrictness cs) |] mdStrictness :: TH.ConstructorInfo -> Q [Q Exp] mdStrictness ci@(ConstructorInfo { constructorName = n , constructorStrictness = bs }) = checkForGADTs ci $ mdConStrictness n bs mdConStrictness :: Name -> [FieldStrictness] -> Q [Q Exp] mdConStrictness n bs = do dss <- reifyConStrictness n return (zipWith (\ (FieldStrictness su ss) ds -> [| SOP.StrictnessInfo $(mdTHUnpackedness su) $(mdTHStrictness ss) $(mdDecidedStrictness ds) |]) bs dss) mdCon :: TH.ConstructorInfo -> Q Exp mdCon ci@(ConstructorInfo { constructorName = n , constructorVariant = conVariant }) = checkForGADTs ci $ case conVariant of NormalConstructor -> [| SOP.Constructor $(stringE (nameBase n)) |] RecordConstructor ts -> [| SOP.Record $(stringE (nameBase n)) $(npE (map mdField ts)) |] InfixConstructor -> do fixity <- reifyFixity n case fromMaybe defaultFixity fixity of Fixity f a -> [| SOP.Infix $(stringE (nameBase n)) $(mdAssociativity a) f |] mdField :: Name -> Q Exp mdField n = [| SOP.FieldInfo $(stringE (nameBase n)) |] mdTHUnpackedness :: TH.Unpackedness -> Q Exp mdTHUnpackedness UnspecifiedUnpackedness = [| SOP.NoSourceUnpackedness |] mdTHUnpackedness NoUnpack = [| SOP.SourceNoUnpack |] mdTHUnpackedness Unpack = [| SOP.SourceUnpack |] mdTHStrictness :: TH.Strictness -> Q Exp mdTHStrictness UnspecifiedStrictness = [| SOP.NoSourceStrictness |] mdTHStrictness Lazy = [| SOP.SourceLazy |] mdTHStrictness TH.Strict = [| SOP.SourceStrict |] mdDecidedStrictness :: DecidedStrictness -> Q Exp mdDecidedStrictness DecidedLazy = [| SOP.DecidedLazy |] mdDecidedStrictness DecidedStrict = [| SOP.DecidedStrict |] mdDecidedStrictness DecidedUnpack = [| SOP.DecidedUnpack |] mdAssociativity :: FixityDirection -> Q Exp mdAssociativity InfixL = [| SOP.LeftAssociative |] mdAssociativity InfixR = [| SOP.RightAssociative |] mdAssociativity InfixN = [| SOP.NotAssociative |] -- | Derive type-level metadata. metadataType' :: DatatypeVariant -> Name -> [TH.ConstructorInfo] -> Q Type metadataType' dataVariant typeName cs = md where md :: Q Type md | isNewtypeVariant dataVariant = [t| 'SOP.T.Newtype $(stringT (nameModule' typeName)) $(stringT (nameBase typeName)) $(mdCon (head cs)) |] | otherwise = [t| 'SOP.T.ADT $(stringT (nameModule' typeName)) $(stringT (nameBase typeName)) $(promotedTypeList $ map mdCon cs) $(promotedTypeListOfList $ map mdStrictness cs) |] mdStrictness :: TH.ConstructorInfo -> Q [Q Type] mdStrictness ci@(ConstructorInfo { constructorName = n , constructorStrictness = bs }) = checkForGADTs ci $ mdConStrictness n bs mdConStrictness :: Name -> [FieldStrictness] -> Q [Q Type] mdConStrictness n bs = do dss <- reifyConStrictness n return (zipWith (\ (FieldStrictness su ss) ds -> [t| 'SOP.T.StrictnessInfo $(mdTHUnpackedness su) $(mdTHStrictness ss) $(mdDecidedStrictness ds) |]) bs dss) mdCon :: TH.ConstructorInfo -> Q Type mdCon ci@(ConstructorInfo { constructorName = n , constructorVariant = conVariant }) = checkForGADTs ci $ case conVariant of NormalConstructor -> [t| 'SOP.T.Constructor $(stringT (nameBase n)) |] RecordConstructor ts -> [t| 'SOP.T.Record $(stringT (nameBase n)) $(promotedTypeList (map mdField ts)) |] InfixConstructor -> do fixity <- reifyFixity n case fromMaybe defaultFixity fixity of Fixity f a -> [t| 'SOP.T.Infix $(stringT (nameBase n)) $(mdAssociativity a) $(natT f) |] mdField :: Name -> Q Type mdField n = [t| 'SOP.T.FieldInfo $(stringT (nameBase n)) |] mdTHUnpackedness :: TH.Unpackedness -> Q Type mdTHUnpackedness UnspecifiedUnpackedness = [t| 'SOP.NoSourceUnpackedness |] mdTHUnpackedness NoUnpack = [t| 'SOP.SourceNoUnpack |] mdTHUnpackedness Unpack = [t| 'SOP.SourceUnpack |] mdTHStrictness :: TH.Strictness -> Q Type mdTHStrictness UnspecifiedStrictness = [t| 'SOP.NoSourceStrictness |] mdTHStrictness Lazy = [t| 'SOP.SourceLazy |] mdTHStrictness TH.Strict = [t| 'SOP.SourceStrict |] mdDecidedStrictness :: DecidedStrictness -> Q Type mdDecidedStrictness DecidedLazy = [t| 'SOP.DecidedLazy |] mdDecidedStrictness DecidedStrict = [t| 'SOP.DecidedStrict |] mdDecidedStrictness DecidedUnpack = [t| 'SOP.DecidedUnpack |] mdAssociativity :: FixityDirection -> Q Type mdAssociativity InfixL = [t| 'SOP.T.LeftAssociative |] mdAssociativity InfixR = [t| 'SOP.T.RightAssociative |] mdAssociativity InfixN = [t| 'SOP.T.NotAssociative |] nameModule' :: Name -> String nameModule' = fromMaybe "" . nameModule {------------------------------------------------------------------------------- Constructing n-ary pairs -------------------------------------------------------------------------------} -- Given -- -- > [a, b, c] -- -- Construct -- -- > a :* b :* c :* Nil npE :: [Q Exp] -> Q Exp npE [] = [| Nil |] npE (e:es) = [| $e :* $(npE es) |] -- Construct a POP. popE :: [Q [Q Exp]] -> Q Exp popE ess = [| POP $(npE (map (join . fmap npE) ess)) |] -- Like npE, but construct a pattern instead npP :: [Q Pat] -> Q Pat npP [] = conP 'Nil [] npP (p:ps) = conP '(:*) [p, npP ps] {------------------------------------------------------------------------------- Some auxiliary definitions for working with TH -------------------------------------------------------------------------------} conInfo :: TH.ConstructorInfo -> Q (Name, [Q Type]) conInfo ci@(ConstructorInfo { constructorName = n , constructorFields = ts }) = checkForGADTs ci $ return (n, map return ts) stringT :: String -> Q Type stringT = litT . strTyLit natT :: Int -> Q Type natT = litT . numTyLit . fromIntegral promotedTypeList :: [Q Type] -> Q Type promotedTypeList [] = promotedNilT promotedTypeList (t:ts) = [t| $promotedConsT $t $(promotedTypeList ts) |] promotedTypeListOfList :: [Q [Q Type]] -> Q Type promotedTypeListOfList = promotedTypeList . map (join . fmap promotedTypeList) promotedTypeListSubst :: (Name -> Q Type) -> [Q Type] -> Q Type promotedTypeListSubst _ [] = promotedNilT promotedTypeListSubst f (t:ts) = [t| $promotedConsT $(t >>= substType f) $(promotedTypeListSubst f ts) |] appsT :: Name -> [Q Type] -> Q Type appsT n = foldl' appT (conT n) appTyVars :: (Name -> Q Type) -> Name -> [TyVarBndrUnit] -> Q Type appTyVars f n bndrs = appsT n (map (f . tvName) bndrs) appTysSubst :: (Name -> Q Type) -> Name -> [Type] -> Q Type appTysSubst f n args = appsT n (map (substType f . unSigType) args) unSigType :: Type -> Type unSigType (SigT t _) = t unSigType t = t substType :: (Name -> Q Type) -> Type -> Q Type substType f = go where go (VarT n) = f n go (AppT t1 t2) = AppT <$> go t1 <*> go t2 go ListT = return ListT go (ConT n) = return (ConT n) go ArrowT = return ArrowT go (TupleT i) = return (TupleT i) go t = return t -- error (show t) -- TODO: This is incorrect, but we only need substitution to work -- in simple cases for now. The reason is that substitution is normally -- the identity, except if we use TH derivation for the tagged datatypes -- in the benchmarking suite. So we can fall back on identity in all -- but the cases we need for the benchmarking suite. -- Process a DatatypeInfo using continuation-passing style. withDataDec :: TH.DatatypeInfo -> (DatatypeVariant -- The variety of data type -- (@data@, @newtype@, @data instance@, or @newtype instance@) -> Cxt -- The datatype context -> Name -- The data type's name -> [TyVarBndrUnit] -- The datatype's type variable binders, both implicit and explicit. -- Examples: -- -- - For `data Maybe a = Nothing | Just a`, the binders are -- [PlainTV a] -- - For `data Proxy (a :: k) = Proxy`, the binders are -- [PlainTV k, KindedTV a (VarT k)] -- - For `data instance DF Int (Maybe b) = DF b`, the binders are -- [PlainTV b] -> [Type] -- For vanilla data types, these are the explicitly bound -- type variable binders, but in Type form. -- For data family instances, these are the type arguments. -- Examples: -- -- - For `data Maybe a = Nothing | Just a`, the types are -- [VarT a] -- - For `data Proxy (a :: k) = Proxy`, the types are -- [SigT (VarT a) (VarT k)] -- - For `data instance DF Int (Maybe b) = DF b`, the binders are -- [ConT ''Int, ConT ''Maybe `AppT` VarT b] -> [TH.ConstructorInfo] -- The data type's constructors -> Q a) -> Q a withDataDec (TH.DatatypeInfo { datatypeContext = ctxt , datatypeName = name , datatypeVars = bndrs , datatypeInstTypes = instTypes , datatypeVariant = variant , datatypeCons = cons }) f = f variant ctxt name bndrs instTypes cons checkForGADTs :: TH.ConstructorInfo -> Q a -> Q a checkForGADTs (ConstructorInfo { constructorVars = exVars , constructorContext = exCxt }) q = do unless (null exVars) $ fail "Existentials not supported" unless (null exCxt) $ fail "GADTs not supported" q isNewtypeVariant :: DatatypeVariant -> Bool isNewtypeVariant Datatype = False isNewtypeVariant DataInstance = False isNewtypeVariant Newtype = True isNewtypeVariant NewtypeInstance = True