{-|

 @GenValidity@ exists to make tests involving @Validity@ types easier and speed
 up the generation of data for them.

 Let's use the example from @Data.Validity@ again: A datatype that represents
 primes.
 To implement tests for this datatype, we would have to be able primes and
 non-primes. We could do this with @(Prime <$> arbitrary) `suchThat` isValid@
 but this is tedious and inefficient.

 The @GenValidity@ type class allows you to specify how to (efficiently)
 generate data of the given type to allow for easier and quicker testing.
 Just implementing @genUnchecked@ already gives you access to @genValid@ and
 @genInvalid@ but writing custom implementations of these functions may speed
 up the generation of data.

 For example, to generate primes, we don't have to consider even numbers other
 than 2. A more efficient implementation could then look as follows:

 > instance GenValidity Prime where
 >     genUnchecked = Prime <$> arbitrary
 >     genValid = Prime <$>
 >        (oneof
 >          [ pure 2
 >          , (\y -> 2 * y + 1) <$> (arbitrary `suchThat` (> 0) `suchThat` isPrime)
 >          ])


 Typical examples of tests involving validity could look as follows:

 > it "succeeds when given valid input" $ do
 >     forAll genValid $ \input ->
 >         myFunction input `shouldSatisfy` isRight

 > it "produces valid output when it succeeds" $ do
 >     forAll genUnchecked $ \input ->
 >         case myFunction input of
 >             Nothing -> return () -- Can happen
 >             Just output -> output `shouldSatisfy` isValid

 -}

module Data.GenValidity
    ( module Data.Validity
    , module Data.GenValidity
    ) where

import           Data.Validity

import           Test.QuickCheck

import           Control.Monad   (forM)

-- | A class of types for which @Validity@-related values can be generated.
--
-- If you also write @Arbitrary@ instances for @GenValidity@ types, it may be
-- best to simply write @arbitrary = genValid@.
class Validity a => GenValidity a where
    -- | Generate a truly arbitrary datum, this should cover all possible
    -- values in the type
    genUnchecked :: Gen a

    -- | Generate a valid datum, this should cover all possible valid values in
    -- the type
    --
    -- The default implementation is as follows:
    --
    -- >  genValid = genUnchecked `suchThat` isValid
    --
    -- To speed up testing, it may be a good idea to implement this yourself.
    -- If you do, make sure that it is possible to generate all possible valid
    -- data, otherwise your testing may not cover all cases.
    genValid :: Gen a
    genValid = genUnchecked `suchThat` isValid

    -- | Generate an invalid datum, this should cover all possible invalid
    -- values
    --
    -- > genInvalid = genUnchecked `suchThat` (not . isValid)
    --
    -- To speed up testing, it may be a good idea to implement this yourself.
    -- If you do, make sure that it is possible to generate all possible
    -- invalid data, otherwise your testing may not cover all cases.
    genInvalid :: Gen a
    genInvalid = genUnchecked `suchThat` (not . isValid)
    {-# MINIMAL genUnchecked #-}


instance GenValidity a => GenValidity (Maybe a) where
    genUnchecked = oneof [pure Nothing, Just <$> genUnchecked]
    genValid     = oneof [pure Nothing, Just <$> genValid]
    genInvalid   = Just <$> genInvalid


-- | If we can generate values of a certain type, we can also generate lists of
-- them.
-- This instance ensures that @genValid@ generates only lists of valid data and
-- that @genInvalid@ generates lists of data such that there is at least one
-- value in there that does not satisfy @isValid@, the rest is unchecked.
instance GenValidity a => GenValidity [a] where
    genUnchecked = genListOf genUnchecked

    genValid     = genListOf genValid

    -- | At least one invalid value in the list, the rest could be either.
    genInvalid   = sized $ \n ->
        case n of
            0 -> (:[]) <$> genInvalid
            1 -> (:[]) <$> genInvalid
            _ -> do
                (x, y) <- genSplit $ n - 1
                before <- resize x $ genListOf genUnchecked
                middle <- genInvalid
                after  <- resize y $ genListOf genUnchecked
                return $ before ++ [middle] ++ after
      where
        genSplit :: Int -> Gen (Int, Int)
        genSplit n = elements $ [ (i, n - i) | i <- [0..n] ]

-- | A version of @listOf@ that takes size into account more accurately.
genListOf :: Gen a -> Gen [a]
genListOf func = sized $ \n ->
    case n of
        0 -> pure []
        m -> do
            pars <- arbPartition m
            forM pars $ \i -> resize i func
  where
    arbPartition :: Int -> Gen [Int]
    arbPartition 0 = pure []
    arbPartition 1 = pure [1]
    arbPartition k = do
        first <- elements [1..k]
        rest <- arbPartition $ k - first
        return $ first : rest