Îõ³h&â +      !"#$%&'()* Safe-InferredGgev-lib“Distribution Class for the GEV family of distributions. That is, each of the distributions considered will have a CDF, PDF and Quantile function.gev-libŽCumulative Distribution Function (CDF) of a given distribution. i.e. $mathbb{P}(X leq x)$ for $x in Omega(X)$ (i.e. x is in the support of X) cdf d +žD = 1 cdf d -žD = 0gev-lib1Complement of the CDF, i.e. $mathbb{P}(X geq x)$.gev-libƒProbability Density Function (pdf) of a distribution. i.e. $mathbb{P}(X = x)$ for $x in Omega(X)$ (i.e. x is in the support of X)gev-libÁLog density of a given distribution i.e. density for $Y = log X$gev-libÝQuantile function (a.k.a inverse CDF) of a distribution. i.e. $F^{-1}(x)$ for $x in [0, 1]$.gev-lib9Quantile complement, i.e. Quantile for level $1 - alpha$.gev-lib*generate random value of the Distribution. Safe-Inferreds gev-libÂcreate Frechet Dist, where scale parameter must be greater than 0. gev-libÂcreate Frechet Dist, where scale parameter must be greater than 0.gev-libÅGev.Distribution instance implementation for the Frechet Distribution   Safe-Inferred¥ Safe-InferredÊgev-libÁcreate Gumbel Dist, where scale parameter must be greater than 0.gev-libÁcreate Gumbel Dist, where scale parameter must be greater than 0.gev-libÄGev.Distribution instance implementation for the Gumbel Distribution Safe-Inferredú"%#$&'"'&#$%+      !"#$%&'()gev-lib-0.2.0.1-inplaceGev Gev.Frechet Gev.GevDist Gev.Gumbel Gev.Weibull DistributioncdfcomplCdfpdflogPdfquantile complQuantilerandGenFrechetDistributionlocationscaleshapefrechetDistMaybe frechetDist!$fDistributionFrechetDistribution$fShowFrechetDistribution$fEqFrechetDistributionGevDistribution gevDistMaybegevDist$fDistributionGevDistribution$fShowGevDistribution$fEqGevDistributionGumbelDistributiongumbelDistMaybe gumbelDist $fDistributionGumbelDistribution$fShowGumbelDistribution$fEqGumbelDistributionWeibullDistributionweibullDistMaybe weibullDist!$fDistributionWeibullDistribution$fShowWeibullDistribution$fEqWeibullDistribution