
GF Quick Reference

Aarne Ranta, April 4, 2006

This is a quick reference on GF grammars. It aims to
cover all forms of expression available when writing gram-
mars. It assumes basic knowledge of GF, which can be ac-
quired from the GF Tutorial (http://www.cs.chalmers.
se/~aarne/GF/doc/tutorial/). Help on GF commands is
obtained on line by the help command (help), and help on
invoking GF with (gf -help).

A Complete Example

This is a complete example of a GF grammar divided into
three modules in files. The grammar recognizes the phrases
one pizza and two pizzas.

File Order.gf:

abstract Order = {

cat

Order ;

Item ;

fun

One, Two : Item -> Order ;

Pizza : Item ;

}

File OrderEng.gf (the top file):

--# -path=.:prelude

concrete OrderEng of Order =

open Res, Prelude in {

flags startcat=Order ;

lincat

Order = SS ;

Item = {s : Num => Str} ;

lin

One it = ss ("one" ++ it.s ! Sg) ;

Two it = ss ("two" ++ it.s ! Pl) ;

Pizza = regNoun "pizza" ;

}

File Res.gf:

resource Res = open Prelude in {

param Num = Sg | Pl ;

oper regNoun : Str -> {s : Num => Str} =

\dog -> {s = table {

Sg => dog ;

_ => dog + "s"

}

} ;

}

To use this example, do

% gf -- in shell: start GF

> i OrderEng.gf -- in GF: import grammar

> p "one pizza" -- parse string

> l Two Pizza -- linearize tree

Modules and files

One module per file. File named Foo.gf contains module
named Foo.

Each module has the structure

moduletypename =

Inherits ** -- optional

open Opens in -- optional

{ Judgements }

Inherits are names of modules of the same type. Inheri-
tance can be restricted:

Mo[f,g], -- inherit only f,g from Mo

Lo-[f,g] -- inheris all but f,g from Lo

Opens are possible in concrete and resource. They are
names of modules of these two types, possibly qualified:

(M = Mo), -- refer to f as M.f or Mo.f

(Lo = Lo) -- refer to f as Lo.f

Module types and judgements in them:

abstract A -- cat, fun, def, data

concrete C of A -- lincat, lin, lindef, printname

resource R -- param, oper

interface I -- like resource, but can have

oper f : T without definition

instance J of I -- like resource, defines opers

that I leaves undefined

incomplete -- functor: concrete that opens

concrete CI of A = one or more interfaces

open I in ...

concrete CJ of A = -- completion: concrete that

CI with instantiates a functor by

(I = J) instances of open interfaces

The forms param, oper may appear in concrete as well,
but are then not inherited to extensions.

All modules can moreover have flags and comments.
Comments have the forms

-- till the end of line

{- any number of lines between -}

--# used for compiler pragmas

1

A concrete can be opened like a resource. It is translated
as follows:

cat C ---> oper C : Type =

lincat C = T T ** {lock_C : {}}

fun f : G -> C ---> oper f : A* -> C* = \g ->

lin f = t t g ** {lock_C = <>}

An abstract can be opened like an interface. Any
concrete of it then works as an instance.

Judgements

cat C -- declare category C

cat C (x:A)(y:B x) -- dependent category C

cat C A B -- same as C (x : A)(y : B)

fun f : T -- declare function f of type T

def f = t -- define f as t

def f p q = t -- define f by pattern matching

data C = f | g -- set f,g as constructors of C

data f : A -> C -- same as

fun f : A -> C; data C=f

lincat C = T -- define lin.type of cat C

lin f = t -- define lin. of fun f

lin f x y = t -- same as lin f = \x y -> t

lindef C = \s -> t -- default lin. of cat C

printname fun f = s -- printname shown in menus

printname cat C = s -- printname shown in menus

printname f = s -- same as printname fun f = s

param P = C | D Q R -- define parameter type P

with constructors

C : P, D : Q -> R -> P

oper h : T = t -- define oper h of type T

oper h = t -- omit type, if inferrable

flags p=v -- set value of flag p

Judgements are terminated by semicolons (;). Subsequent
judgments of the same form may share the keyword:

cat C ; D ; -- same as cat C ; cat D ;

Judgements can also share RHS:

fun f,g : A -- same as fun f : A ; g : A

Types

Abstract syntax (in fun):

C -- basic type, if cat C

C a b -- basic type for dep. category

(x : A) -> B -- dep. functions from A to B

(_ : A) -> B -- nondep. functions from A to B

(p,q : A) -> B -- same as (p : A)-> (q : A) -> B

A -> B -- same as (_ : A) -> B

Int -- predefined integer type

Float -- predefined float type

String -- predefined string type

Concrete syntax (in lincat):

Str -- token lists

P -- parameter type, if param P

P => B -- table type, if P param. type

{s : Str ; p : P}-- record type

{s,t : Str} -- same as {s : Str ; t : Str}

{a : A} **{b : B}-- record type extension, same as

{a : A ; b : B}

A * B * C -- tuple type, same as

{p1 : A ; p2 : B ; p3 : C}

Ints n -- type of n first integers

Resource (in oper): all those of concrete, plus

Tok -- tokens (subtype of Str)

A -> B -- functions from A to B

Int -- integers

Strs -- list of prefixes (for pre)

PType -- parameter type

Type -- any type

As parameter types, one can use any finite type: P defined
in param P, Ints n, and record types of parameter types.

Expressions

Syntax trees = full function applications

f a b -- : C if fun f : A -> B -> C

1977 -- : Int

3.14 -- : Float

"foo" -- : String

Higher-Order Abstract syntax (HOAS): functions as argu-
ments:

F a (\x -> c) -- : C if a : A, c : C (x : B),

fun F : A -> (B -> C) -> C

Tokens and token lists

"hello" -- : Tok, singleton Str

"hello" ++ "world" -- : Str

["hello world"] -- : Str, same as "hello" ++ "world"

"hello" + "world" -- : Tok, computes to "helloworld"

[] -- : Str, empty list

2

Parameters

Sg -- atomic constructor

VPres Sg P2 -- applied constructor

{n = Sg ; p = P3} -- record of parameters

Tables

table { -- by full branches

Sg => "mouse" ;

Pl => "mice"

}

table { -- by pattern matching

Pl => "mice" ;

_ => "mouse" -- wildcard pattern

}

table {

n => regn n "cat" -- variable pattern

}

table Num {...} -- table given with arg. type

table ["ox"; "oxen"] -- table as course of values

_ => "fish" -- same as table {_ => "fish"}

\\p,q => t -- same as \\p => \\q => t

t ! p -- select p from table t

case e of {...} -- same as table {...} ! e

Records

{s = "Liz"; g = Fem} -- record in full form

{s,t = "et"} -- same as {s = "et";t= "et"}

{s = "Liz"} ** -- record extension: same as

{g = Fem} {s = "Liz" ; g = Fem}

<a,b,c> -- tuple, same as {p1=a;p2=b;p3=c}

Functions

\x -> t -- lambda abstract

\x,y -> t -- same as \x -> \y -> t

\x,_ -> t -- binding not in t

Local definitions

let x : A = d in t -- let definition

let x = d in t -- let defin, type inferred

let x=d ; y=e in t -- same as

let x=d in let y=e in t

let {...} in t -- same as let ... in t

t where {...} -- same as let ... in t

Free variation

variants {x ; y} -- both x and y possible

variants {} -- nothing possible

Prefix-dependent choices

pre {"a" ; "an" / v} -- "an" before v, "a" otherw.

strs {"a" ; "i" ;"o"}-- list of condition prefixes

Typed expression

<t:T> -- same as t, to help type inference

Accessing bound variables in lin: use fields $1, $2,

$3,.... Example:

fun F : (A : Set) -> (El A -> Prop) -> Prop ;

lin F A B = {s = ["for all"] ++ A.s ++ B.$1 ++ B.s}

Pattern matching

These patterns can be used in branches of table and case

expressions. Patterns are matched in the order in which
they appear in the grammar.

C -- atomic param constructor

C p q -- param constr. applied to patterns

x -- variable, matches anything

_ -- wildcard, matches anything

"foo" -- string

56 -- integer

{s = p ; y = q} -- record, matches extensions too

<p,q> -- tuple, same as {p1=p ; p2=q}

p | q -- disjunction, binds to first match

x@p -- binds x to what p matches

- p -- negation

p + "s" -- sequence of two string patterns

p* -- repetition of a string pattern

Sample library functions

-- lib/prelude/Predef.gf

drop : Int -> Tok -> Tok -- drop prefix of length

take : Int -> Tok -> Tok -- take prefix of length

tk : Int -> Tok -> Tok -- drop suffix of length

dp : Int -> Tok -> Tok -- take suffix of length

occur : Tok -> Tok -> PBool -- test if substring

occurs : Tok -> Tok -> PBool -- test if any char occurs

show : (P:Type) -> P ->Tok -- param to string

read : (P:Type) -> Tok-> P -- string to param

toStr : (L:Type) -> L ->Str -- find "first" string

-- lib/prelude/Prelude.gf

param Bool = True | False

oper

SS : Type -- the type {s : Str}

ss : Str -> SS -- construct SS

cc2 : (_,_ : SS) -> SS -- concat SS’s

optStr : Str -> Str -- string or empty

strOpt : Str -> Str -- empty or string

3

bothWays : Str -> Str -> Str -- X++Y or Y++X

init : Tok -> Tok -- all but last char

last : Tok -> Tok -- last char

prefixSS : Str -> SS -> SS

postfixSS : Str -> SS -> SS

infixSS : Str -> SS -> SS -> SS

if_then_else : (A : Type) -> Bool -> A -> A -> A

if_then_Str : Bool -> Str -> Str -> Str

Flags

Flags can appear, with growing priority,

• in files, judgement flags and without dash (-)

• as flags to gf when invoked, with dash

• as flags to various GF commands, with dash

Some common flags used in grammars:

startcat=cat use this category as default

lexer=literals int and string literals recognized

lexer=code like program code

lexer=text like text: spacing, capitals

lexer=textlit text, unknowns as string lits

unlexer=code like program code

unlexer=codelit code, remove string lit quotes

unlexer=text like text: punctuation, capitals

unlexer=textlit text, remove string lit quotes

unlexer=concat remove all spaces

unlexer=bind remove spaces around "&+"

optimize=all_subs best for almost any concrete

optimize=values good for lexicon concrete

optimize=all usually good for resource

optimize=noexpand for resource, if =all too big

For the full set of values for FLAG, use on-line h -FLAG.

File paths

Colon-separated lists of directories searched in the given
order:

--# -path=.:../abstract:../common:prelude

This can be (in order of growing preference), as first line
in the top file, as flag to gf when invoked, or as flag to the
i command. The prefix --# is used only in files.

If the environment variabls GF LIB PATH is defined, its
value is automatically prefixed to each directory to extend
the original search path.

Alternative grammar formats

Old GF (before GF 2.0): all judgements in any kinds of
modules, division into files uses includes. A file Foo.gf is
recognized as the old format if it lacks a module header.

Context-free (file foo.cf). The form of rules is e.g.

Fun. S ::= NP "is" AP ;

If Fun is omitted, it is generated automatically. Rules must
be one per line. The RHS can be empty.

Extended BNF (file foo.ebnf). The form of rules is e.g.

S ::= (NP+ ("is" | "was") AP | V NP*) ;

where the RHS is a regular expression of categories and
quoted tokens: "foo", CAT, T U, T|U, T*, T+, T?, or
empty. Rule labels are generated automatically.

Probabilistic grammars (not a separate format). You
can set the probability of a function f (in its value cate-
gory) by

--# prob f 0.009

These are put into a file given to GF using the probs=File
flag on command line. This file can be the grammar file
itself.

Example-based grammars (file foo.gfe). Expressions
of the form

in Cat "example string"

are preprocessed by using a parser given by the flag

--# -resource=File

and the result is written to foo.gf.

References

GF Homepage (http://www.cs.chalmers.se/~aarne/
GF/)

A. Ranta, Grammatical Framework: A Type-Theoretical
Grammar Formalism. The Journal of Functional Program-

ming, vol. 14:2. 2004, pp. 145-189.

4

