module GF.Grammar.EBNF (EBNF, ERule, ERHS(..), ebnf2cf) where
import GF.Data.Operations
import GF.Grammar.CFG
import PGF (mkCId)
import Data.List
type EBNF = [ERule]
type ERule = (ECat, ERHS)
type ECat = (String,[Int])
type ETok = String
data ERHS =
ETerm ETok
| ENonTerm ECat
| ESeq ERHS ERHS
| EAlt ERHS ERHS
| EStar ERHS
| EPlus ERHS
| EOpt ERHS
| EEmpty
type CFRHS = [CFSymbol]
type CFJustRule = (Cat, CFRHS)
ebnf2cf :: EBNF -> [CFRule]
ebnf2cf ebnf =
[CFRule cat items (mkCFF i cat) | (i,(cat,items)) <- zip [0..] (normEBNF ebnf)]
where
mkCFF i c = CFObj (mkCId ("Mk" ++ c ++ "_" ++ show i)) []
normEBNF :: EBNF -> [CFJustRule]
normEBNF erules = let
erules1 = [normERule ([i],r) | (i,r) <- zip [0..] erules]
erules2 = erules1
erules3 = concat (map pickERules erules2)
erules4 = nubERules erules3
in [(mkCFCatE cat, map eitem2cfitem its) | (cat,itss) <- erules3, its <- itss]
refreshECats :: [NormERule] -> [NormERule]
refreshECats rules = [recas [i] rule | (i,rule) <- zip [0..] rules] where
recas ii (cat,its) = (updECat ii cat, [recss ii 0 s | s <- its])
recss ii n [] = []
recss ii n (s:ss) = recit (ii ++ [n]) s : recss ii (n+1) ss
recit ii it = case it of
EINonTerm cat -> EINonTerm (updECat ii cat)
EIStar (cat,t) -> EIStar (updECat ii cat, [recss ii 0 s | s <- t])
EIPlus (cat,t) -> EIPlus (updECat ii cat, [recss ii 0 s | s <- t])
EIOpt (cat,t) -> EIOpt (updECat ii cat, [recss ii 0 s | s <- t])
_ -> it
pickERules :: NormERule -> [NormERule]
pickERules rule@(cat,alts) = rule : concat (map pics (concat alts)) where
pics it = case it of
EIStar ru@(cat,t) -> mkEStarRules cat ++ pickERules ru
EIPlus ru@(cat,t) -> mkEPlusRules cat ++ pickERules ru
EIOpt ru@(cat,t) -> mkEOptRules cat ++ pickERules ru
_ -> []
mkEStarRules cat = [(cat', [[],[EINonTerm cat, EINonTerm cat']])]
where cat' = mkNewECat cat "Star"
mkEPlusRules cat = [(cat', [[EINonTerm cat],[EINonTerm cat, EINonTerm cat']])]
where cat' = mkNewECat cat "Plus"
mkEOptRules cat = [(cat', [[],[EINonTerm cat]])]
where cat' = mkNewECat cat "Opt"
nubERules :: [NormERule] -> [NormERule]
nubERules rules = nub optim where
optim = map (substERules (map mkSubst replaces)) irreducibles
(replaces,irreducibles) = partition reducible rules
reducible (cat,[items]) = isNewCat cat && all isOldIt items
reducible _ = False
isNewCat (_,ints) = ints == []
isOldIt (EITerm _) = True
isOldIt (EINonTerm cat) = not (isNewCat cat)
isOldIt _ = False
mkSubst (cat,its) = (cat, head its)
substERules :: [(ECat,[EItem])] -> NormERule -> NormERule
substERules g (cat,itss) = (cat, map sub itss) where
sub [] = []
sub (i@(EINonTerm cat') : ii) = case lookup cat g of
Just its -> its ++ sub ii
_ -> i : sub ii
sub (EIStar r : ii) = EIStar (substERules g r) : ii
sub (EIPlus r : ii) = EIPlus (substERules g r) : ii
sub (EIOpt r : ii) = EIOpt (substERules g r) : ii
eitem2cfitem :: EItem -> CFSymbol
eitem2cfitem it = case it of
EITerm a -> Terminal a
EINonTerm cat -> NonTerminal (mkCFCatE cat)
EIStar (cat,_) -> NonTerminal (mkCFCatE (mkNewECat cat "Star"))
EIPlus (cat,_) -> NonTerminal (mkCFCatE (mkNewECat cat "Plus"))
EIOpt (cat,_) -> NonTerminal (mkCFCatE (mkNewECat cat "Opt"))
type NormERule = (ECat,[[EItem]])
data EItem =
EITerm String
| EINonTerm ECat
| EIStar NormERule
| EIPlus NormERule
| EIOpt NormERule
deriving Eq
normERule :: ([Int],ERule) -> NormERule
normERule (ii,(cat,rhs)) =
(cat,[map (mkEItem (ii ++ [i])) r' | (i,r') <- zip [0..] (disjNorm rhs)]) where
disjNorm r = case r of
ESeq r1 r2 -> [x ++ y | x <- disjNorm r1, y <- disjNorm r2]
EAlt r1 r2 -> disjNorm r1 ++ disjNorm r2
EEmpty -> [[]]
_ -> [[r]]
mkEItem :: [Int] -> ERHS -> EItem
mkEItem ii rhs = case rhs of
ETerm a -> EITerm a
ENonTerm cat -> EINonTerm cat
EStar r -> EIStar (normERule (ii,(mkECat ii, r)))
EPlus r -> EIPlus (normERule (ii,(mkECat ii, r)))
EOpt r -> EIOpt (normERule (ii,(mkECat ii, r)))
_ -> EINonTerm ("?????",[])
mkECat ints = ("C", ints)
prECat (c,[]) = c
prECat (c,ints) = c ++ "_" ++ prTList "_" (map show ints)
mkCFCatE :: ECat -> Cat
mkCFCatE = prECat
updECat _ (c,[]) = (c,[])
updECat ii (c,_) = (c,ii)
mkNewECat (c,ii) str = (c ++ str,ii)