module GF.Data.Graph ( Graph(..), Node, Edge, NodeInfo
, newGraph, nodes, edges
, nmap, emap, newNode, newNodes, newEdge, newEdges
, insertEdgeWith
, removeNode, removeNodes
, nodeInfo
, getIncoming, getOutgoing, getNodeLabel
, inDegree, outDegree
, nodeLabel
, edgeFrom, edgeTo, edgeLabel
, reverseGraph, mergeGraphs, renameNodes
) where
import Data.List
import Data.Maybe
import Data.Map (Map)
import qualified Data.Map as Map
import Data.Set (Set)
import qualified Data.Set as Set
data Graph n a b = Graph [n] ![Node n a] ![Edge n b]
deriving (Eq,Show)
type Node n a = (n,a)
type Edge n b = (n,n,b)
type NodeInfo n a b = Map n (a, [Edge n b], [Edge n b])
newGraph :: [n] -> Graph n a b
newGraph ns = Graph ns [] []
nodes :: Graph n a b -> [Node n a]
nodes (Graph _ ns _) = ns
edges :: Graph n a b -> [Edge n b]
edges (Graph _ _ es) = es
nmap :: (a -> c) -> Graph n a b -> Graph n c b
nmap f (Graph c ns es) = Graph c [(n,f l) | (n,l) <- ns] es
emap :: (b -> c) -> Graph n a b -> Graph n a c
emap f (Graph c ns es) = Graph c ns [(x,y,f l) | (x,y,l) <- es]
newNode :: a
-> Graph n a b
-> (Graph n a b,n)
newNode l (Graph (c:cs) ns es) = (Graph cs ((c,l):ns) es, c)
newNodes :: [a] -> Graph n a b -> (Graph n a b,[Node n a])
newNodes ls g = (g', zip ns ls)
where (g',ns) = mapAccumL (flip newNode) g ls
newEdge :: Edge n b -> Graph n a b -> Graph n a b
newEdge e (Graph c ns es) = Graph c ns (e:es)
newEdges :: [Edge n b] -> Graph n a b -> Graph n a b
newEdges es g = foldl' (flip newEdge) g es
insertEdgeWith :: Eq n =>
(b -> b -> b) -> Edge n b -> Graph n a b -> Graph n a b
insertEdgeWith f e@(x,y,l) (Graph c ns es) = Graph c ns (h es)
where h [] = [e]
h (e'@(x',y',l'):es') | x' == x && y' == y = (x',y', f l l'):es'
| otherwise = e':h es'
removeNode :: Ord n => n -> Graph n a b -> Graph n a b
removeNode n = removeNodes (Set.singleton n)
removeNodes :: Ord n => Set n -> Graph n a b -> Graph n a b
removeNodes xs (Graph c ns es) = Graph c ns' es'
where
keepNode n = not (Set.member n xs)
ns' = [ x | x@(n,_) <- ns, keepNode n ]
es' = [ e | e@(f,t,_) <- es, keepNode f && keepNode t ]
nodeInfo :: Ord n => Graph n a b -> NodeInfo n a b
nodeInfo g = Map.fromList [ (n, (x, fn inc n, fn out n)) | (n,x) <- nodes g ]
where
inc = groupEdgesBy edgeTo g
out = groupEdgesBy edgeFrom g
fn m n = fromMaybe [] (Map.lookup n m)
groupEdgesBy :: (Ord n) => (Edge n b -> n)
-> Graph n a b -> Map n [Edge n b]
groupEdgesBy f g = Map.fromListWith (++) [(f e, [e]) | e <- edges g]
lookupNode :: Ord n => NodeInfo n a b -> n -> (a, [Edge n b], [Edge n b])
lookupNode i n = fromJust $ Map.lookup n i
getIncoming :: Ord n => NodeInfo n a b -> n -> [Edge n b]
getIncoming i n = let (_,inc,_) = lookupNode i n in inc
getOutgoing :: Ord n => NodeInfo n a b -> n -> [Edge n b]
getOutgoing i n = let (_,_,out) = lookupNode i n in out
inDegree :: Ord n => NodeInfo n a b -> n -> Int
inDegree i n = length $ getIncoming i n
outDegree :: Ord n => NodeInfo n a b -> n -> Int
outDegree i n = length $ getOutgoing i n
getNodeLabel :: Ord n => NodeInfo n a b -> n -> a
getNodeLabel i n = let (l,_,_) = lookupNode i n in l
nodeLabel :: Node n a -> a
nodeLabel = snd
edgeFrom :: Edge n b -> n
edgeFrom (f,_,_) = f
edgeTo :: Edge n b -> n
edgeTo (_,t,_) = t
edgeLabel :: Edge n b -> b
edgeLabel (_,_,l) = l
reverseGraph :: Graph n a b -> Graph n a b
reverseGraph (Graph c ns es) = Graph c ns [ (t,f,l) | (f,t,l) <- es ]
mergeGraphs :: Ord m => Graph n a b -> Graph m a b
-> (Graph n a b, m -> n)
mergeGraphs (Graph c ns1 es1) g2 = (Graph c' (ns2++ns1) (es2++es1), newName)
where
(xs,c') = splitAt (length (nodes g2)) c
newNames = Map.fromList (zip (map fst (nodes g2)) xs)
newName n = fromJust $ Map.lookup n newNames
Graph _ ns2 es2 = renameNodes newName undefined g2
renameNodes :: (n -> m)
-> [m]
-> Graph n a b -> Graph m a b
renameNodes newName c (Graph _ ns es) = Graph c ns' es'
where ns' = map' (\ (n,x) -> (newName n,x)) ns
es' = map' (\ (f,t,l) -> (newName f, newName t, l)) es
map' :: (a -> b) -> [a] -> [b]
map' _ [] = []
map' f (x:xs) = ((:) $! f x) $! map' f xs